GPS News  
ICE WORLD
Study helps explain Greenland glaciers' varied vulnerability to melting
by Staff Writers
Irvine CA (SPX) Mar 19, 2018

Photographs taken of the Mogens North glacier in southeast Greenland in 1932 and 2013 show how much ice has been lost in the past eight decades. UCI glaciologists have created new maps of this part of Greenland using data from NASA missions and learned why some of the massive, moving ice slabs are more vulnerable to melting than others. National History Museum of Denmark (left) and Hans Henrik Tholstrup.

Using data from NASA missions observing Earth, researchers at the University of California, Irvine have created new maps of the bed topography beneath a score of glaciers in southeast Greenland, thereby gaining a much better understanding of why some are undergoing rapid retreat and others are relatively stable.

"The undersides of glaciers in deeper valleys are exposed to warm, salty Atlantic water, while the others are perched on sills, protected from direct exposure to warmer ocean water," said Romain Millan, lead author of the study, available online in the American Geophysical Union journal Geophysical Research Letters. "We have been able to demonstrate unequivocally that glacier retreat in southeast Greenland is controlled by the topography of the bedrock under the ice and by ocean temperature."

Millan, a UCI graduate student researcher in Earth system science, and his colleagues analyzed 20 major outlet glaciers in southeast Greenland using high-resolution airborne gravity measurements and ice thickness data from NASA's Operation IceBridge mission; bathymetry information from NASA's Oceans Melting Greenland project; and results from the BedMachine version 3 computer model, developed at UCI.

They found glacial fjords hundreds of meters deeper than previously estimated; the full extent of the marine-based portions of the glaciers; deep troughs enabling Atlantic Ocean water to reach the glacier fronts and melt them from below; and few shallow sills that limit contact with this warmer water.

"It's important to understand the physical processes controlling the retreat in order to improve projections of sea level rise from this region in a warming climate," Millan said. "Until recently, we had little information on ocean temperature and water depth in these fjords to quantify these processes, so the interpretation of glacier evolution on a case-by-case basis was difficult."

Co-author Eric Rignot, UCI professor of Earth system science, added, "Now that the picture is clear, the role of the ocean in glacier evolution is overwhelming."

Rignot, who has led dozens of research expeditions to Earth's polar regions, said that southeast Greenland - with its fast-moving glaciers, deep fjords and harsh climate conditions - poses significant challenges to researchers.

"Thanks to the newest NASA missions, such as Oceans Melting Greenland and Operation IceBridge, we have been able to make great advances in understanding the evolution of this very dynamic sector of Greenland and its impact on sea level rise now and in decades to come," he said.


Related Links
University of California - Irvine
Beyond the Ice Age


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ICE WORLD
Chain reaction of fast-draining lakes poses new risk for Greenland ice sheet
Cambridge UK (SPX) Mar 16, 2018
A growing network of lakes on the Greenland ice sheet has been found to drain in a chain reaction that speeds up the flow of the ice sheet, threatening its stability. Researchers from the UK, Norway, US and Sweden have used a combination of 3D computer modelling and real-world observations to show the previously unknown, yet profound dynamic consequences tied to a growing number of lakes forming on the Greenland ice sheet. Lakes form on the surface of the Greenland ice sheet each summer as the wea ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Malaysia's honey hunters defy angry bees to harvest treetop treasure

Harnessing the power of soil microbes for more sustainable farming

Ag robot speeds data collection, analyses of crops as they grow

Scientists engineer crops to conserve water, resist drought

ICE WORLD
Researchers find 'critical' security flaws in AMD chips

New speed record for trapped-ion 'building blocks' of quantum computers

Largest molecular spin found close to a quantum phase transition

Practical spin wave transistor one step closer

ICE WORLD
Senegal helicopter crash toll rises to 8

Evading in-flight lightning strikes

BAE Systems inks Saudi deal for 48 Typhoon jets

F-35Bs get first operational deployment with Marine Expeditionary Unit

ICE WORLD
VW boss 'convinced of diesel renaissance'

China's bike-share app Ofo raises $850 mn to expand overseas

VWs using more diesel, failing pollution tests after recalls: study

Japan car giants team up to build hydrogen stations

ICE WORLD
China's industrial output posts strong start to 2018

China rejects Canadian accusation of steel dumping

US proposes WTO reforms likely targeting China

China to merge banking, insurance regulators in massive overhaul

ICE WORLD
Cash payments prompt tropical forest users to harvest less

Locked in a forest

Increasing tree mortality in a warming world

Diverse tropical forests grow fast despite widespread phosphorus limitation

ICE WORLD
Scientists accurately model the action of aerosols on clouds

Full house for EDRS

Voyaging for the Sentinels

Collaboration will study desert dust's impact on climate from space

ICE WORLD
UCLA researchers develop a new class of two-dimensional materials

Nanostructures made of previously impossible material

Mining hardware helps scientists gain insight into silicon nanoparticles

Big steps toward control of production of tiny building blocks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.