Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
Study Reveals a Remarkable Symmetry in Black Hole Jets
by Francis Redd for Goddard Space Flight Center
Greenbelt, MD (SPX) Dec 17, 2012


(File image of GRB 101225a) Astronomers examining the properties of black hole jets compared 54 gamma-ray bursts with 234 active galaxies classified as blazars and quasars. Surprisingly, the power and brightness of the jets share striking similarities despite a wide range of black hole mass, age and environment. Regardless of these differences, the jets produce light by tapping into similar percentages of the kinetic energy of particles moving along the jet, suggesting a common underlying physical cause. Related image

Black holes range from modest objects formed when individual stars end their lives to behemoths billions of times more massive that rule the centers of galaxies. A new study using data from NASA's Swift satellite and Fermi Gamma-ray Space Telescope shows that high-speed jets launched from active black holes possess fundamental similarities regardless of mass, age or environment. The result provides a tantalizing hint that common physical processes are at work.

"What we're seeing is that once any black hole produces a jet, the same fixed fraction of energy generates the gamma-ray light we observe with Fermi and Swift," said lead researcher Rodrigo Nemmen, a NASA Postdoctoral Program (NPP) fellow at NASA's Goddard Space Flight Center in Greenbelt, Md.

Gas falling toward a black hole spirals inward and piles up into an accretion disk, where it becomes compressed and heated. Near the inner edge of the disk, on the threshold of the black hole's event horizon - the point of no return - some of the material becomes accelerated and races outward as a pair of jets flowing in opposite directions along the black hole's spin axis. These jets contain particles moving at nearly the speed of light, which produce gamma rays - the most extreme form of light - when they interact.

"We don't fully understand how this acceleration process occurs, but in active galaxies we see jets that have operated so long that they've produced trails of gas extending millions of light-years," said Sylvain Guiriec, an NPP fellow at Goddard and a co-author on the study, which was published in the Dec. 14 issue of Science.

At the other end of the scale are gamma-ray bursts (GRBs), the most powerful explosions in the universe. Astronomers believe that the most common type of GRB heralds the death of a massive star and the birth of a stellar-mass black hole. When the star's energy-producing core runs through its store of fuel, it collapses and forms a black hole. As the star's overlying layers cascade inward, an accretion disk forms and the black hole launches a jet.

The particles in some GRB jets have been clocked at speeds exceeding 99.9 percent the speed of light. When the jet breaches the star's surface, it produces a pulse of gamma rays typically lasting a few seconds. Satellites like Swift and Fermi can detect this emission if the jet is approximately directed toward us.

To search for a trend across a wide range of masses, the scientists looked at the galactic-scale equivalent of GRB jets. These come from the brightest classes of active galaxies, blazars and quasars, which sport jets that likewise happen to point our way.

To match the amount of energy given off by a typical blazar in one second, the sun must shine for 317,000 years. To equal the energy a run-of-the-mill GRB puts out in one second, the sun would need to shine for another 3 billion years.

Ultimately, the team examined 54 GRBs and 234 blazars and quasars. The gamma-ray brightness obtained with Fermi, Swift and other observatories told the scientists how much light the jets radiate. Radio and X-ray observations allowed them to determine the power of the particle acceleration in each jet. By analyzing how these two properties related to each other, the researchers discovered that the GRB and blazar samples both exhibited the same relationship.

"Here we have a situation where the mechanism that launches material from a black hole either has to be very similar on both ends of the mass scale - from a few to a billion solar masses - or we need different mechanisms that manage to produce very similar efficiencies," explained co-author Eileen Meyer, a post-doctoral researcher at the Space Telescope Science Institute in Baltimore.

The finding simplifies astronomers' understanding of black holes by showing that their activity is governed by the same set of rules - whatever they happen to be - independent of mass, age, or the jet's brightness and power. The jets tap into similar fractions - between 3 and 15 percent - of the energy wrapped up in the motion of their accelerated particles to power the emission of gamma rays and other forms of light.

"It's a bit like a poor man and a billionaire spending the same percentage of their incomes on their heating bills," said team member Markos Georganopoulos, an associate professor of physics at the University of Maryland, Baltimore County.

The authors hope to extend the research to other black-hole-powered events that launch jets, such as the tidal disruption of stars by supermassive black holes.

"One especially useful outcome of this research will be to foster greater communication between astronomers studying GRBs and those working on active galaxies, which in the past we've tended to regard as separate areas of study," said co-author Neil Gehrels, the principal investigator on NASA's Swift.

.


Related Links
Universe at NASA
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
New knowledge about the remarkable properties of black holes
Copenhagen, Denmark (SPX) Dec 13, 2012
Black holes are surrounded by many mysteries, but now researchers from the Niels Bohr Institute, among others, have come up with new groundbreaking theories that can explain several of their properties. The research shows that black holes have properties that resemble the dynamics of both solids and liquids. The results are published in the prestigious scientific journal, Physical Review L ... read more


TIME AND SPACE
Fertile soil doesn't fall from the sky

Brazil fears mad cow case will force cut in beef prices

Dead or alive? A new test to determine viability of soybean rust spores

Chemical analysis reveals first cheese making in Northern Europe in the 6th millennium BC

TIME AND SPACE
Novel NIST process is a low-cost route to ultrathin platinum films

Dreidel-like dislocations lead to remarkable properties

Tiny compound semiconductor transistor could challenge silicon's dominance

Berkeley Lab Breaks Ground on Flexible Design Building to Test Low-energy Systems and Components

TIME AND SPACE
New system for aircraft forecasts potential storm hazards over oceans

Commando II Takes To Sky

Rockwell Collins wins Navy E-6b upgrade

Canada widens search for fighter jet beyond F-35

TIME AND SPACE
Ultrasound can now monitor the health of your car engine

Chinese firm to build electric cars in Bulgaria: report

Philippines gives green-light to electric tricycles

Apple Maps glitch could be deadly: Australian police

TIME AND SPACE
Migrant workers rally over Hong Kong working conditions

Britain looks to Chinese tourists for Christmas cheer

WTO appoints panel to probe China, US trade disputes

Walker's World: A mega trade pact?

TIME AND SPACE
If you cut down a tree in the forest, can wildlife hear it?

Warming climate unlikely to cause extinction of ancient Amazon trees

Xmas tree genome very much the same over the last 100 million years

As Amazon urbanizes, rural fires burn unchecked

TIME AND SPACE
Google Maps returns to iPhone after Apple fiasco

Shadows on ice: Proba-1 images Concordia south polar base

Wildfires Light Up Western Australia

Environmental satellite produces first photo of Earth

TIME AND SPACE
Nanocrystals Not Small Enough to Avoid Defects

Nature Materials Study: Boosting Heat Transfer With Nanoglue

New optical tweezers trap specimens just a few nanometers across

How 'transparent' is graphene?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement