GPS News  
ENERGY TECH
Striking the right note on a magnetic violin
by Staff Writers
Washington DC (SPX) Nov 11, 2015


Researchers used the rectangular coils shown here to strike the magnetic fields that enclose the donut-shaped plasma. The colors of the plasma denote the different vibrations produced by striking the fields with external magnetic coils. Image courtesy of Princeton Plasma Physics Laboratory and General Atomics. For a larger version of this image please go here.

The swirling plasma in donut-shaped fusion facilities called tokamaks are subject to intense heat bursts that can damage the vessel's walls. Halting or mitigating these bursts, called Edge Localized Modes (ELMs), is a key goal of fusion research.

While physicists have long known that they could suppress ELMs by pushing and pulling on the plasma with magnetic fields, they frequently found that doing so destabilized the core of the plasma. The reason for this was that perturbing the plasma as they were doing always led to the same response, like producing the same note when striking a tuning fork.

Now scientists at General Atomics and the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have found an effective way to mitigate ELMs without adversely affecting plasma in the core region. They were able to do this because the magnetic fields that enclose the plasma are like the strings on a violin that produce notes when struck with the fields from external magnetic coils (Figure 1). And one of these notes, the researchers found, is particularly useful for preventing ELMs.

They discovered this note by pushing and pulling the fields that encircle the tokamak for two rotations instead of the standard one during experiments on the DIII-D National Fusion Facility that General Atomics operates for the DOE in San Diego. This produced a very stable mode of response that can be used to help control the edge of the plasma.

The researchers verified these findings with diagnostics that showed the different plasma responses to the two-rotation perturbations. "We now understand how to pluck just the notes that sound the best, giving us the power to fine-tune our plasmas" says Nikolas Logan, who led the research team with Carlos Paz-Soldan of General Atomics and will give an invited talk on the results at the 57th Annual Meeting of the APS Division of Plasma Physics.

These finding could have important implications for ITER, the multinational tokamak being built in France. They suggest that ITER may be able to use the newly discovered results to prevent or mitigate ELMs without impacting overall performance.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Physical Society
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Explaining a mysterious barrier to fusion known as the 'density limit'
Washington DC (SPX) Nov 11, 2015
For more than 50 years physicists have puzzled over a daunting mystery: Why do tokamak plasmas spiral apart when reaching a certain maximum density and halt fusion reactions? This "density limit" serves as a barrier that prevents tokamaks from operating at peak efficiency, and understanding what sets this maximum density would speed the development of fusion as a safe, clean and abundant energy ... read more


ENERGY TECH
Stanford researchers develop new way to measure crop yields from space

New test for ancient DNA authenticity throws doubt on Stone Age wheat trade

Vibrating bees tell the state of the hive

Pineapple genome offers insight into photosynthesis in drought-tolerant plants

ENERGY TECH
A new slant on semiconductor characterization

Mimicing quantum entanglement with laser to double data speeds

Upgrading the quantum computer

The world's fastest nanoscale photonics switch

ENERGY TECH
Chinese scientists unveil new stealth technology for jets

French military to buy US C-130 transport aircraft

F-35's Joint Strike Missile successfully completes flight test

Thailand, China to conduct first joint fighter jet drill

ENERGY TECH
BMW buys Chinese firm to drive car leasing business

Fitch slashes VW ratings over poor management of pollution fraud

Making cars of the future stronger, using less energy

Moody's downgrades VW as toll from emissions scandal grows

ENERGY TECH
China splurges on world's biggest online shopping spree

Pakistan hands land over to China for economic zone

Shanghai free trade zone director under investigation

China to push alternative trade pact at APEC: minister

ENERGY TECH
Treetop leaves of tall trees store extra water

Peru creates huge national park in Amazon basin

OECD warns Brazil on environment, economy risks

After 5,000 years, Britian's Fortingall Yew is turning female

ENERGY TECH
RapidScat Celebrates One-Year Anniversary

Excitement Grows as NASA Carbon Sleuth Begins Year Two

NASA to fly, sail north to study plankton-climate change connection

Curtiss-Wright and Harris bring digital map solutions to rugged systems

ENERGY TECH
Researchers build nanoscale autonomous walking machine from DNA

New way of computing with interaction-dependent nanomagnets

Finally a promising natural nanomaterial

Umbrella-shaped diamond nanostructures make efficient photon collectors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.