Subscribe free to our newsletters via your
. GPS News .




NANO TECH
Stretchable, transparent graphene-metal nanowire electrode
by Staff Writers
Ulsan, South Korea (SPX) Jun 04, 2013


This is an LED-fitted soft eye contact lens. Credit: UNIST.

A hybrid transparent and stretchable electrode could open the new way for flexible displays, solar cells, and even electronic devices fitted on a curvature substrate such as soft eye contact lenses, by the UNIST(Ulsan National Institute of Science and Technology) research team.

Transparent electrodes are in and of themselves nothing all that new - they have been widely used in things like touch screens, flat-screen TVs, solar cells and light-emitting devices. Currently transparent electrodes are commonly made from a material known as indium tin oxide(ITO). Although it suffices for its job, it's brittle, cracking and losing functionality if flexed. It also degrades over time, and is somewhat expensive due to the limited quantities of indium metal.

As an alternative, the networks of randomly distributed mNWs have been considered as promising candidates for next-generation transparent electrodes, due to their low-cost, high-speed fabrication of transparent electrodes.

However, the number of disadvantage of the mNW networks has limited their integration into commercial devices. They have low breakdown voltage, typically high NW-NW junction resistance, high contact resistance between network and active materials, material instability and poor adhesion to plastic substrates.

UNIST scientists here, combined graphene with silver nanowires to form a thin, transparent and stretchable electrode. Combining graphene and silver nanowires in a hybrid material overcomes weakness of individual material.

Graphene is also well known as good a candidate for transparent electrode because of their unique electrical properties and high mechanical flexibility. However, scalable graphene synthesis methods for commercialization produces lower quality graphene with individual segments called grains which increases the electrical resistance at boundaries between these grains.

Silver nanowires, on the other hand, have high resistance because they are randomly oriented like a jumble of toothpicks facing in different directions. In this random orientation, there are many contact between nanowires, resulting in high resistance due to large junction resistance of nanowires. Due to these drawbacks, neither is good for conducting electricity, but a hybrid structure, combined from two materials, is.

As a result, it presents a high electrical and optical performance with mechanical flexibility and stretchability for flexible electronics. The hybrid Transparent electrode reportedly has a low "sheet resistance" while preserving high transmittance.

There's almost no change in its resistance when bent and folded where ITO is bent, its resistance increases significantly. Additionally the hybrid material reportedly has a low "sheet resistance" while preserving electrical and optical properties reliable against thermal oxidation condition

The graphene-mNW hybrid structure developed by the research team, as a new class of such electrodes, may soon find use in a variety of other applications. The research team demonstrated Inorganic light-emitting diode (ILDED) devices fitted on a soft eye contact lens using the transparent, stretchable interconnects of the hybrid electrodes as an application example.

As an in vivo study, this contact lens was worn by a live rabbit eye for five hours and none of abnormal behavior, such as bloodshot eye or the rubbing of eye areas, of the live rabbit had been observed.

Wearing eye contact lenses, picture-taking and scanning, is not a scene on Sci-Fi movie anymore.

Jang-Ung Park, professor of the School of Nano-Bioscience and Chemical Engineering, UNIST, led the effort.

"We believe the hybridization between two-dimensional and one-dimensional nanomaterials presents a promising strategy toward flexible, wearable electronics and implantable biosensor devices, and indicate the substantial promise of future electronics," said Prof. Park.

This work was supported by the National Research Foundation of Korea and the Ministry of Knowledge Economy through the Materials Original Technology Program and has been published (Web) on May 23, 2013 in Nano Letters. Title: High-Performance, Transparent and Stretchable Electrodes using Graphene-Metal Nanowire Hybrid Structures.

.


Related Links
Ulsan National Institute of Science and Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Shape-shifting nanoparticles flip from sphere to net in response to tumor signal
San Diego CA (SPX) May 29, 2013
Scientists at the University of California, San Diego, have designed tiny spherical particles to float easily through the bloodstream after injection, then assemble into a durable scaffold within diseased tissue. An enzyme produced by a specific type of tumor can trigger the transformation of the spheres into netlike structures that accumulate at the site of a cancer, the team reports in the jou ... read more


NANO TECH
Climate and land use: Europe's floods raise questions

China opens EU wine probe as trade dispute spreads

Stopping the worm from turning

Great Wall of trouble for Chinese farmer

NANO TECH
Printing innovations provide 10-fold improvement in organic electronics

Intel hopes new processors can kick-start ailing PC market

Intel introduces fourth generation processors

Milwaukee-York researchers forward quest for quantum computing

NANO TECH
Pilot Completes First F-35 Vertical Landing for Royal Air Force

Egypt report blames balloon crash on pilot, leak

Shun Tak Holdings buys a third of Jetstar Hong Kong

Airline industry calls for single emissions standard

NANO TECH
Los Alamos catalyst could jumpstart e-cars, green energy

Volvo chief acknowledges errors, says to stay in US

Monitoring system can detect dangerous fatigue in mine truck driver

Electric cars slow to gain traction in Germany

NANO TECH
Hundreds fall sick in Bangladesh garment factory

Argentina, Brazil head for showdown over rail seizure

France's Hollande pays state visit to Japan

Troubled Italian steel mill goes into administration

NANO TECH
Brazil police deployed to contain land feud

Brazil grapples with indigenous land protests

Forest, soil carbon important but does not offset fossil fuel emissions

Smithsonian scientists discover that rainforests take the heat

NANO TECH
New maps show how shipping noise spans the globe

Magnetospheric Multiscale Mission Team Assemble Flight Observatory

Elevated carbon dioxide making arid regions greener

Landsat 8 Satellite Begins Watch

NANO TECH
Stretchable, transparent graphene-metal nanowire electrode

Shape-shifting nanoparticles flip from sphere to net in response to tumor signal

Gold nanocrystal vibration captured on billion-frames-per-second film

Understanding freezing behavior of water at the nanoscale




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement