GPS News  
Stopping Atoms

These important advances had limited use because they only applied to atoms with 'closed two-level transition', excluding important elements such as hydrogen, iron, nickel and cobalt. In contrast, nearly all elements and a wide range of molecules are affected by magnetic forces, or are paramagnetic, which means that this latest research has much wider applicability.
by Staff Writers
Austin TX (SPX) Oct 04, 2007
With atoms and molecules in a gas moving at thousands of kilometres per hour, physicists have long sought a way to slow them down to a few kilometres per hour to trap them. A paper, published today in the Institute of Physics' New Journal of Physics, demonstrates how a group of physicists from The University of Texas at Austin, US, have found a way to slow down, stop and explore a much wider range of atoms than ever before.

Inspired by the coilgun that was developed by the University's Center for Electromechanics, the group has developed an "atomic coilgun" that slows and gradually stops atoms with a sequence of pulsed magnetic fields.

Dr. Mark Raizen and his colleagues in Texas ultimately plan on using the gun to trap atomic hydrogen, which he said has been the Rosetta Stone of physics for many years and is the simplest and most abundant atom in the periodic table.

Work on slowing and stopping atoms has been at the forefront of advancement in physics for some time. In 1997, there were three joint-winners for the Nobel Prize in Physics for their combined contribution to laser cooling - a method using laser light to cool gases and keep atoms floating or captured in "atom traps".

These important advances had limited use because they only applied to atoms with 'closed two-level transition', excluding important elements such as hydrogen, iron, nickel and cobalt. In contrast, nearly all elements and a wide range of molecules are affected by magnetic forces, or are paramagnetic, which means that this latest research has much wider applicability.

Professor Raizen said, "Of particular importance are the doors being opened for our understanding of hydrogen. Precision spectroscopy of hydrogen's isotopes, deuterium and tritium, continues to be of great interest to both atomic and nuclear physics. Further study of tritium, as the simplest radioactive element, also serves as an ideal system for the study of Beta decay. "

Having successfully designed and used an 18-coil device to slow a supersonic beam of metastable neon atoms, the team is now developing a 64-stage device to further slow and stop atoms.

Related Links
Institute of Physics
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Physicists Establish Spooky Quantum Communication
Ann Arbor MI (SPX) Oct 02, 2007
Physicists at the University of Michigan have coaxed two separate atoms to communicate with a sort of quantum intuition that Albert Einstein called "spooky." In doing so, the researchers have made an advance toward super-fast quantum computing. The research could also be a building block for a quantum internet. Scientists used light to establish what's called "entanglement" between two atoms, which were trapped a meter apart in separate enclosures (think of entangling like controlling the outcome of one coin flip with the outcome of a separate coin flip).







  • MEPs seek limits on aircraft emissions by 2010
  • Aircraft And Automobiles Thrive In Hurricane-Force Winds At Lockheed Martin
  • New Delft Material Concept For Aircraft Wings Could Save Billions
  • Cathay Pacific chief hits out at anti-aviation critics

  • High-Performance Motorised Wheelchairs
  • Toyota says new fuel-cell car can go further on single tank
  • Envision Solar To Provide NREL With Solar Tree For Renewable Recharge Station
  • China's Chery group matures into global auto player

  • First Class Of Airmen Train For Wideband Global SATCOM
  • Australia To Join With United States In Defence Global Satellite Communications Capability
  • Boeing Supports New USAF GPS Ground Control System
  • China's military tests sophisticated real-time data system

  • Armavir Radar To Be On Combat Duty Late In 2007
  • Counter-measures to be added to US missile defense tests: general
  • BMD Watch: GBI hits ICBM in test success
  • US missile defense system scores intercept in test

  • High cereal prices may fuel problems in poor areas: FAO chief
  • Signature campaign in Italy against genetic engineering
  • Feeding The World Without Genetic Engineering
  • Joint Venture To Strengthen Cotton Breeding

  • China To Share Disaster Forecasting Information With Developing Countries
  • Pakistan turmoil won't slow quake recovery: army general
  • Japan gets extra seconds to brace for quakes
  • GMES Space Program Reaches Important Development Milestone

  • Foton-M3 Experiments Return To Earth
  • Radio Wave Cooling Offers New Twist On Laser Cooling
  • SSC Communication System Flys On Russian Capsule Foton
  • Engineers Rescue Aging Satellites And Save Millions

  • Roving The Moon
  • Microsoft teams up in Japan to set robotics standards
  • Drive-By-Wire And Human Behavior Systems Key To Virginia Tech Urban Challenge Vehicle
  • Successful Jules Verne Rendezvous Simulation At ATV Control Centre

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement