Subscribe free to our newsletters via your
. GPS News .




TECH SPACE
Stanford Researchers Break Million-core Supercomputer Barrier
by Andrew Myers for Stanford News
Stanford CA (SPX) Jan 31, 2013


An image from the jet noise simulation. A new design for an engine nozzle is shown in gray at left. Exhaust tempertures are in red/orange. The sound field is blue/cyan. Chevrons along the nozzle rim enhance turbulent mixing to reduce noise. (Illustration: Courtesy of the Center for Turbulence Research, Stanford University)

Stanford Engineering's Center for Turbulence Research (CTR) has set a new record in computational science by successfully using a supercomputer with more than one million computing cores to solve a complex fluid dynamics problem-the prediction of noise generated by a supersonic jet engine.

Joseph Nichols, a research associate in the center, worked on the newly installed Sequoia IBM Bluegene/Q system at Lawrence Livermore National Laboratories (LLNL) funded by the Advanced Simulation and Computing (ASC) Program of the National Nuclear Security Administration (NNSA). Sequoia once topped list of the world's most powerful supercomputers, boasting 1,572,864 compute cores (processors) and 1.6 petabytes of memory connected by a high-speed five-dimensional torus interconnect.

Because of Sequoia's impressive numbers of cores, Nichols was able to show for the first time that million-core fluid dynamics simulations are possible-and also to contribute to research aimed at designing quieter aircraft engines.

The physics of noise
The exhausts of high-performance aircraft at takeoff and landing are among the most powerful human-made sources of noise. For ground crews, even for those wearing the most advanced hearing protection available, this creates an acoustically hazardous environment. To the communities surrounding airports, such noise is a major annoyance and a drag on property values.

Understandably, engineers are keen to design new and better aircraft engines that are quieter than their predecessors. New nozzle shapes, for instance, can reduce jet noise at its source, resulting in quieter aircraft.

Predictive simulations-advanced computer models-aid in such designs. These complex simulations allow scientists to peer inside and measure processes occurring within the harsh exhaust environment that is otherwise inaccessible to experimental equipment. The data gleaned from these simulations are driving computation-based scientific discovery as researchers uncover the physics of noise.

More cores, more challenges
"Computational fluid dynamics (CFD) simulations, like the one Nichols solved, are incredibly complex. Only recently, with the advent of massive supercomputers boasting hundreds of thousands of computing cores, have engineers been able to model jet engines and the noise they produce with accuracy and speed," said Parviz Moin, the Franklin M. and Caroline P. Johnson Professor in the School of Engineering and Director of CTR.

CFD simulations test all aspects of a supercomputer. The waves propagating throughout the simulation require a carefully orchestrated balance between computation, memory and communication. Supercomputers like Sequoia divvy up the complex math into smaller parts so they can be computed simultaneously. The more cores you have, the faster and more complex the calculations can be.

And yet, despite the additional computing horsepower, the difficulty of the calculations only becomes more challenging with more cores. At the one-million-core level, previously innocuous parts of the computer code can suddenly become bottlenecks.

Ironing out the wrinkles
Over the past few weeks, Stanford researchers and LLNL computing staff have been working closely to iron out these last few wrinkles. This week, they were glued to their terminals during the first "full-system scaling" to see whether initial runs would achieve stable run-time performance. They watched eagerly as the first CFD simulation passed through initialization then thrilled as the code performance continued to scale up to and beyond the all-important one-million-core threshold, and as the time-to-solution declined dramatically.

"These runs represent at least an order-of-magnitude increase in computational power over the largest simulations performed at the Center for Turbulence Research previously," said Nichols "The implications for predictive science are mind-boggling."

A homecoming
The current simulations were a homecoming of sorts for Nichols. He was inspired to pursue a career in supercomputing as a high-school student when he attended a two-week summer program at Lawrence Livermore computing facility in 1994 sponsored by the Department of Energy. Back then he worked on the Cray Y-MP, one of the fastest supercomputers of its time.

"Sequoia is approximately 10 million times more powerful than that machine," Nichols noted.

The Stanford ties go deeper still. The computer code used in this study is named CharLES and was developed by former Stanford senior research associate, Frank Ham. This code utilizes unstructured meshes to simulate turbulent flow in the presence of complicated geometry.

In addition to jet noise simulations, Stanford researchers in the Predictive Science Academic Alliance Program (PSAAP), sponsored by the Department of Energy, are using the CharLES code to investigate advanced-concept scramjet propulsion systems used in hypersonic flight (with video)-flight at many times the speed of sound-and to simulate the turbulent flow over an entire airplane wing. Andrew Myers is associate director of communications for the Stanford University School of Engineering.

.


Related Links
Center for Turbulence Research at Stanford
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Supercomputer sets computing record
Palo Alto, Calif. (UPI) Jan 28, 2013
Engineers at California's Stanford University say they set a record in computer science by using a supercomputer with more than 1 million computing cores. Researcher Joseph Nichols of the school's Center for Turbulence Research used the Sequoia IBM Bluegene/Q system at Lawrence Livermore National Laboratories to solve a complex fluid dynamics problem: the prediction of noise generated b ... read more


TECH SPACE
Innovative uses of nanotechnology in food and agriculture

Some Health Benefits Of Berries May Not Make It Past Your Mouth

Soya protein can be replaced by rapeseed protein

EU urges two-year ban on 'disturbing' bee insecticides

TECH SPACE
A new material for environmentally friendlier electronics

Novel materials: smart and magnetic

Rice technique points toward 2-D devices

New Options for transparent contact electrodes

TECH SPACE
H-1 Helicopter Mission Computer Contract Awarded

Japan has concerns on F-35 sales

Philippines to buy 12 S. Korean fighter jets

ANA keeps forecast as nine-month net profit surges

TECH SPACE
Never get stressed searching for a parking space again

Honda nine-month net profit doubles to $3.2 bn

Japan's top three automakers post record 2012 sales

Motion Control Keeps Electric Car's Four Wheels on the Road

TECH SPACE
EU 'better than North America' for China firms: survey

Brazil's slow growth bad for sport events

China mining firm falls on Hong Kong trading debut

Pakistan approves port transfer to China

TECH SPACE
New research will help shed light on role of Amazon forests in global carbon cycle

Dartmouth research offers new control strategies for bipolar bark beetles

Brazil to inventory Amazon rainforest trees

Civilians fell rare Syrian trees for firewood

TECH SPACE
Remote Sensing Solution Takes Wing Aboard Ultralight Aircraft

New tools enable high-res observations from anywhere with internet access

Internet age navigation drives economies: studies

RapidEye Commits to Data Continuity; Discusses System Health and Life Span

TECH SPACE
Notre Dame studies benefits and threats of nanotechnology research

A nano-gear in a nano-motor inside

New Research Gives Insight into Graphene Grain Boundaries

Chemistry resolves toxic concerns about carbon nanotubes




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement