Subscribe free to our newsletters via your
. GPS News .




BLUE SKY
Sprites form at plasma irregularities in the lower ionosphere
by Staff Writers
University Park (SPX) May 09, 2014


This is a photograph of a sprite. Image courtesy H. H. C. Stenbaek-Nielsen.

Atmospheric sprites have been known for nearly a century, but their origins were a mystery. Now, a team of researchers has evidence that sprites form at plasma irregularities and may be useful in remote sensing of the lower ionosphere.

"We are trying to understand the origins of this phenomenon," said Victor Pasko, professor of electrical engineering, Penn State. "We would like to know how sprites are initiated and how they develop."

Sprites are an optical phenomenon that occur above thunderstorms in the D region of the ionosphere, the area of the atmosphere just above the dense lower atmosphere, about 37 to 56 miles above the Earth. The ionosphere is important because it facilitates the long distance radio communication and any disturbances in the ionosphere can affect radio transmission.

"In high-speed videos we can see the dynamics of sprite formation and then use that information to model and to reproduce the dynamics," said Jianqi Qin, postdoctoral fellow in electrical engineering, Penn State, who developed a model to study sprites.

Sprites occur above thunderstorms, but thunderstorms, while necessary for the appearance of a sprite, are not sufficient to initiate sprites. All thunderstorms and lightning strikes do not produce sprites. Recent modeling studies show that plasma irregularities in the ionosphere are a necessary condition for the initiation of sprite streamers, but no solid proof of those irregularities existed.

The researchers studied video observations of sprites, developed a model of how sprites evolve and disappear, and tested the model to see if they could recreate sprite-forming conditions. They report their results today (May 7) in Nature Communications.

Sprites resemble reddish orange jellyfish with bluish filamentary tendrils hanging down below. Careful examination of videos of sprites forming showed that their downward hanging filaments form much more rapidly than in the horizontal spread, leading the researchers to suggest that localized plasma irregularities cause the streamers to propagate.

The researchers used a two-dimensional cylindrical symmetric plasma fluid model, a mathematical model of the ionization movements in the sprite, to study sprite dynamics. They then used the model to recreate optical sprite creation. From this recreation, the researchers determined where the sprite streamers originated, and they could estimate the size of the plasma irregularity.

Further analysis suggested some potential causes of these plasma irregularities. The most obvious seems to be the existence in that area of a previous sprite. For the sprites examined, there were no previous sprites in that area that occurred close enough in time, unless there were long-lasting irregularities. However, the researchers are unsure how such long-lasting events could occur.

Another possible source for the irregularities is meteor events. The D region of the ionosphere is in the upper part of the atmosphere where most meteors can exist, because once they enter the denser, lower atmosphere, they burn up due to atmospheric friction.

"This technique can be used for remote sensing in the ionosphere as well," said Pasko. "Using high speed videos and fluid models we may be able to see other things that go on in the ionosphere and better understand the effects of various natural phenomena on very low frequency radio communications."

Also working on this project were Matthew G. McHarg, professor of physics and director, United States Air Force Academy Space Physics and Atmospheric Research Center, and Hans C. Stenbaek-Nielsen, professor of geophysics emeritus, University of Alaska, Fairbanks.

.


Related Links
Penn State
The Air We Breathe at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BLUE SKY
Climate change threatens to worsen US ozone pollution
Boulder CO (SPX) May 07, 2014
Ozone pollution across the continental United States will become far more difficult to keep in check as temperatures rise, according to new research led by the National Center for Atmospheric Research (NCAR). The detailed study shows that Americans face the risk of a 70 percent increase in unhealthy summertime ozone levels by 2050. This is because warmer temperatures and other changes in ... read more


BLUE SKY
Study says pesticides to blame for honeybee colony collapse

Rising CO2 poses significant threat to human nutrition

As CO2 levels rise, some crop nutrients will fall

Rice or wheat? How grains define cultural identity

BLUE SKY
Molecular Foundry Opens the Door to Better Doping of Semiconductor Nanocrystals

New lab-on-a-chip device overcomes miniaturization problems

US chip giant Intel to pump $6 bn into Israel: minister

Progress made in developing nanoscale electronics

BLUE SKY
Staying On Task in the Automated Cockpit

First Iraqi F-16 Completes First Flight

April Marks New F-35 Flying Records

BAE touts component production for F-35

BLUE SKY
Toyota posts record annual profit of $17.9 bn

Life-changer or death sentence? Madrid's electric bikes

Google says driving forward on autonomous car

Carmakers promise Chinese drivers a breath of fresh air

BLUE SKY
Cautious optimism at China bitcoin summit despite uncertain future

US's Lew to urge China to play fair economically

China's largest bank ICBC bars services for Bitcoin

China tycoon eyes Norway after cold reception in Iceland

BLUE SKY
Emerald ash borers were in US long before first detection

Super-charged tropical trees of Borneo vitally important for global carbon cycling

Arctic study sheds light on tree-ring divergence problem

Extinction stalks Myanmar's forests

BLUE SKY
Experts demonstrate versatility of Sentinel-1

Swarm's precise sense of magnetism

Kazakhstan's First Earth Observation Satellite to Orbit

GOES-R Propulsion and System Modules Delivered

BLUE SKY
Harnessing Magnetic Vortices for Making Nanoscale Antennas

New method for measuring the temperature of nanoscale objects discovered

Nanomaterial Outsmarts Ions

World's thinnest nanowires created by Vanderbilt grad student




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.