GPS News  
INTERNET SPACE
Spray-on antennas could unlock potential of smart, connected technology
by Staff Writers
Philadelphia PA (SPX) Sep 27, 2018

Researchers from Drexel University's College of Engineering have developed a way to "spray paint" invisibly thin antennas from a type of two-dimensional material called MXene. The antennas perform as well or better than the ones currently used in mobile devices and RFID tags.

The promise of wearables, functional fabrics, the Internet of Things, and their "next-generation" technological cohort seems tantalizingly within reach. But researchers in the field will tell you a prime reason for their delayed "arrival" is the problem of seamlessly integrating connection technology - namely, antennas - with shape-shifting and flexible "things."

But a breakthrough by researchers in Drexel's College of Engineering, could now make installing an antenna as easy as applying some bug spray.

In research recently published in Science Advances, the group reports on a method for spraying invisibly thin antennas, made from a type of two-dimensional, metallic material called MXene, that perform as well as those being used in mobile devices, wireless routers and portable transducers.

"This is a very exciting finding because there is a lot of potential for this type of technology," said Kapil Dandekar, PhD, a professor of Electrical and Computer Engineering in the College of Engineering, who directs the Drexel Wireless Systems Lab, and was a co-author of the research. "The ability to spray an antenna on a flexible substrate or make it optically transparent means that we could have a lot of new places to set up networks - there are new applications and new ways of collecting data that we can't even imagine at the moment."

The researchers, from the College's Department of Materials Science and Engineering, report that the MXene titanium carbide can be dissolved in water to create an ink or paint. The exceptional conductivity of the material enables it to transmit and direct radio waves, even when it's applied in a very thin coating.

"We found that even transparent antennas with thicknesses of tens of nanometers were able to communicate efficiently," said Asia Sarycheva, a doctoral candidate in the A.J. Drexel Nanomaterials Institute and Materials Science and Engineering Department. "By increasing the thickness up to 8 microns, the performance of MXene antenna achieved 98 percent of its predicted maximum value."

Preserving transmission quality in a form this thin is significant because it would allow antennas to easily be embedded - literally, sprayed on - in a wide variety of objects and surfaces without adding additional weight or circuitry or requiring a certain level of rigidity.

"This technology could enable the truly seamless integration of antennas with everyday objects which will be critical for the emerging Internet of Things," Dandekar said. "Researchers have done a lot of work with non-traditional materials trying to figure out where manufacturing technology meets system needs, but this technology could make it a lot easier to answer some of the difficult questions we've been working on for years."

Initial testing of the sprayed antennas suggest that they can perform with the same range of quality as current antennas, which are made from familiar metals, like gold, silver, copper and aluminum, but are much thicker than MXene antennas.

Making antennas smaller and lighter has long been a goal of materials scientists and electrical engineers, so this discovery is a sizeable step forward both in terms of reducing their footprint as well as broadening their application.

"Current fabrication methods of metals cannot make antennas thin enough and applicable to any surface, in spite of decades of research and development to improve the performance of metal antennas," said Yury Gogotsi, PhD, Distinguished University and Bach professor of Materials Science and Engineering in the College of Engineering, and Director of the A.J. Drexel Nanomaterials Institute, who initiated and led the project.

"We were looking for two-dimensional nanomaterials, which have sheet thickness about hundred thousand times thinner than a human hair; just a few atoms across, and can self-assemble into conductive films upon deposition on any surface. Therefore, we selected MXene, which is a two-dimensional titanium carbide material, that is stronger than metals and is metallically conductive, as a candidate for ultra-thin antennas."

Drexel researchers discovered the family of MXene materials in 2011 and have been gaining an understanding of their properties, and considering their possible applications, ever since. The layered two-dimensional material, which is made by wet chemical processing, has already shown potential in energy storage devices, electromagnetic shielding, water filtration, chemical sensing, structural reinforcement and gas separation.

Naturally MXene materials have drawn comparisons to promising two-dimensional materials like graphene, which won the Nobel Prize in 2010 and has been explored as a material for printable antennas. In the paper, the Drexel researchers put the spray-on antennas up against a variety of antennas made from these new materials, including graphene, silver ink and carbon nanotubes. The MXene antennas were 50 times better than graphene and 300 times better than silver ink antennas in terms of preserving the quality of radio wave transmission.

"The MXene antenna not only outperformed the macro and micro world of metal antennas, we went beyond the performance of available nanomaterial antennas, while keeping the antenna thickness very low," said Babak Anasori, PhD, a research assistant professor in A.J. Drexel Nanomaterials Institute.

"The thinnest antenna was as thin as 62 nanometers - about thousand times thinner than a sheep of paper - and it was almost transparent. Unlike other nanomaterials fabrication methods, that requires additives, called binders, and extra steps of heating to sinter the nanoparticles together, we made antennas in a single step by airbrush spraying our water-based MXene ink."

The group initially tested the spray-on application of the antenna ink on a rough substrate - cellulose paper - and a smooth one - polyethylene terephthalate sheets - the next step for their work will be looking at the best ways to apply it to a wide variety of surfaces from glass to yarn and skin.

"Further research on using materials from the MXene family in wireless communication may enable fully transparent electronics and greatly improved wearable devices that will support the active lifestyles we are living," Anasori said.

Research paper


Related Links
Drexel University
Satellite-based Internet technologies


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


INTERNET SPACE
Hackers target real estate deals, with devastating impact
Washington (AFP) Sept 23, 2018
James and Candace Butcher were ready to finalize the purchase of their dream retirement home, and at closing time wired $272,000 from their bank following instructions they received by email. Within hours, the money had vanished. Unbeknownst to the Colorado couple, the email account for the real estate settlement company had been hacked, and fraudsters had altered the wiring instruction to make off with the hefty sum representing a big chunk of the Butchers' life savings, according to a lawsuit ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
EU palm oil ban sows bitter seeds for Southeast Asian farmers

South African villagers tap into trend for 'superfood' baobab

Farmers fume as France stands firm on more Pyrenees bears

Chinese actress has high hopes for her Bordeaux vineyard

INTERNET SPACE
Qualcomm alleges Apple gave swiped chip secrets to Intel

Smaller, faster and more efficient modulator sets to revolutionize optoelectronic industry

DARPA contracts USC for circuit development program

New photonic chip promises more robust quantum computers

INTERNET SPACE
Harris contracted for B-52, C-130 parts for U.S. Special Ops Forces

Sikorsky nears completion on HH-60W helicopter trainers

Sikorsky contracted for CH-53K King Stallion spares

DynCorp contracted for training aircraft support for Navy

INTERNET SPACE
Drivers for Uber, Lyft see incomes fall as participation jumps

Renault-Nissan alliance takes Google Android for a drive

Ford executive says may boost production in China to avoid tariffs

Drivers see red over Oslo's green 'war on cars'

INTERNET SPACE
China says can't hold US trade talks with 'knife to the throat'

US, EU, Japan jointly denounce unfair trade

Trump's tariffs on $200 bn of Chinese imports kick in

Shares in Chinese hotpot chain Haidilao sizzle on Hong Kong debut

INTERNET SPACE
Coastal wetlands will survive rising seas, but only if we let them

Coal plant offsets with carbon capture means covering 89 percent of the US in forests

Indigenous peoples, key to saving forests, catch a break

Natural mechanism could lower emissions from tropical peatlands

INTERNET SPACE
Scientists locate parent lightning strokes of sprites

Quick and not-so-dirty: A rapid nano-filter for clean water

ECOSTRESS Maps LA's Hot Spots

Famous theory of the living Earth upgraded to Gaia 2.0

INTERNET SPACE
New nanoparticle superstructures made from pyramid-shaped building blocks

Cannibalistic materials feed on themselves to grow new nanostructures

First-ever colored thin films of nanotubes created

Nanotubes change the shape of water









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.