GPS News  
Spitzer Finds Water Vapor On Hot Exo-Planet HD 189733b

An artist's impression of a transiting exoplanet, named 'HD 189733b'. Scientists have reported the first conclusive discovery of the presence of water vapour in the atmosphere of a planet beyond our Solar System. Infrared analysis of this gas giant's transit across its parent star provided the breakthrough. The planet HD 189733b lies 63 light-years away, in the constellation Vulpecula. It was discovered in 2005 as it dimmed the light of its parent star by some three percent when transiting in front of it.
by Staff Writers
Pasadena CA (SPX) Jul 12, 2007
A scorching-hot gas planet beyond our solar system is steaming up with water vapor, according to new observations from NASA's Spitzer Space Telescope. The planet, called HD 189733b, swelters as it zips closely around its star every two days or so. Astronomers had predicted that planets of this class, termed "hot Jupiters," would contain water vapor in their atmospheres. Yet finding solid evidence for this has been slippery. These latest data are the most convincing yet that hot Jupiters are "wet."

"We're thrilled to have identified clear signs of water on a planet that is trillions of miles away," said Giovanna Tinetti, a European Space Agency fellow at the Institute d'Astrophysique de Paris in France." Tinetti is lead author of a paper on HD 189733b appearing today in Nature.

Although water is an essential ingredient to life as we know it, wet hot Jupiters are not likely to harbor any creatures. Previous measurements from Spitzer indicate that HD 189733b is a fiery 1,000 Kelvin (1,340 degrees Fahrenheit) on average. Ultimately, astronomers hope to use instruments like those on Spitzer to find water on rocky, habitable planets like Earth.

"Finding water on this planet implies that other planets in the universe, possibly even rocky ones, could also have water," said co-author Sean Carey of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena. "I'm excited to tell my nephews and niece about the discovery."

The new findings are part of a brand new field of science investigating the climate on exoplanets, or planets outside our solar system. Such faraway planets cannot be seen directly; however, in the past few years, astronomers have begun to glean information about their atmospheres by observing a subset of hot Jupiters that transit, or pass in front of, their stars as seen from Earth.

Earlier this year, Spitzer became the first telescope to analyze, or break apart, the light from two transiting hot Jupiters, HD 189733b and HD 209458b. One of its instruments, called a spectrometer, observed the planets as they dipped behind their stars in what is called the secondary eclipse. This led to the first-ever "fingerprint," or spectrum, of an exoplanet's light. Yet, the results came up "dry," probably because the structure of these planets' atmospheres makes finding water with this method difficult.

Later, a team of astronomers found hints of water in HD 209458b by analyzing visible-light data taken by NASA's Hubble Space Telescope. The Hubble data were captured as the planet crossed in front of the star, an event called the primary eclipse.

Now, Tinetti and her team have captured the best evidence yet for wet, hot Jupiters by watching HD 189733b's primary eclipse in infrared light with Spitzer. In this method, changes in infrared light from the star are measured as the planet slips by, filtering starlight through its outer atmosphere.

The astronomers observed the eclipse with Spitzer's infrared array camera at three different infrared wavelengths and noticed that for each wavelength a different amount of light was absorbed by the planet. The pattern by which this absorption varies with wavelength matches that created by water.

"Water is the only molecule that can explain that behavior," said Tinetti. "Observing primary eclipses in infrared light is the best way to search for this molecule in exoplanets."

The water on HD 189733b is too hot to condense into clouds; however, previous observations of the planet from Spitzer and other ground and space-based telescopes suggest that it might have dry clouds, along with high winds and a hot, sun-facing side that is warmer than its dark side. HD 189733b is located 63 light-years away in the constellation Vulpecula.

The findings appear in the 12 July 2007 issue of the scientific journal Nature. The original paper, titled 'Water vapour in the atmosphere of a transiting extrasolar planet', is by G.Tinetti, A.Vidal-Madjar, M-C. Liang, J-P. Beaulieu, Y. L. Yung, S. Carey, R. Barber, J. Tennyson, I. Ribas, N. Allard, G. Ballester, D.K. Sing, F. Selsis.

Related Links
Spitzer at CalTech
Spitzer at NASA
Exoplanets at ESA
COROT at ESA
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Computer Models Suggest Planetary And Extrasolar Planet Atmospheres
St Louis MO (SPX) Jun 20, 2007
The world is abuzz with the discovery of an extrasolar, Earth-like planet around the star Gliese 581 that is relatively close to our Earth at 20 light years away in the constellation Libra. Bruce Fegley, Jr., Ph.D., professor of earth and planetary sciences in Arts and Sciences at Washington University in St. Louis, has worked on computer models that can provide hints to what comprises the atmosphere of such planets and better-known celestial bodies in our own solar system.







  • Boeing Awarded Two Billion Dollar A-10 Wing Contract
  • Raytheon Awarded Rolling Airframe Missile Contracts Valued At Nearly 146 Million Dollars
  • Europe Bans All Indonesian Airlines From EU Airspace
  • France Supports Cap On Airline Carbon Emissions

  • Smart Traffic Boxes Could Help Monitor Roads And Save Money
  • Chinese Mayor Urges Residents To Stop Buying Cars
  • QinetiQ And NexxtDrive To Develop Hybrid Electric Drive Six Wheelers
  • Lawmakers Urge US Recall Of Chinese-Made Tires

  • A-10s Get Digital Makeover
  • TSAT Team Demonstrates Technology Maturity Of Laser Communications Subsystem
  • Boeing Showcases Operational TSAT System During Critical Review
  • Lockheed Martin Shifts Into Production Phase Of Navy Narrowband Tactical Satellite

  • Japan Unable To Intercept Missiles Fired At US
  • Global Missile Defense System Could Be Created By 2020 Says Ivanov
  • Japan Makes Missile Defence Shield Priority
  • ABM And The Geostrategic Interests Of Azerbaijan

  • Emission Choices Lead To Starkly Different Futures For Northeast Agriculture
  • Expert Says Rising Sea Levels Pose Threat To Rice
  • Cheap Fuel Or Pricey Food
  • US Mulls Plunge Into Ocean Aquaculture

  • Let Them Raise Catfish Says Indonesian Minister As Future For Mud Volcano Victims
  • Impact Of Climate Change Equal To Nuclear War
  • Floods And Heatwaves Offer Warning Of Impact Of Climate Change
  • MIT Tool Determines Landslide Risk In Tropics

  • NASA Harnesses Power Of Virtual Worlds For Exploration And Outreach
  • Stardust And Deep Impact Get New Assignments Cruising About Sol
  • Warner Goes Digital To Bring New Life To Films
  • The Adventures Of ASTRO And NextSat

  • Lockheed Martin Reaches Major Milestone For The Mule Robotic Vehicle Engineering Evaluation Unit
  • Eurobot Makes A Splash
  • Team SpelBots Take On Robotic Titans At RoboCup 2007
  • Japanese Humanoid Is Working In The Rain

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement