Subscribe free to our newsletters via your
. GPS News .




CHIP TECH
Spintronics: Molecules stabilizing magnetism
by Staff Writers
Karlsruher, Germany (SPX) Jul 28, 2015


The magnetic moments of the three organic molecules and the cobalt surface align very stably relative to each other. Image courtesy M. Gruber, KIT. For a larger version of this image please go here.

Organic molecules allow producing printable electronics and solar cells with extraordinary properties. In spintronics, too, molecules open up the unexpected possibility of controlling the magnetism of materials and, thus, the spin of the flowing electrons.

According to what is reported in Nature Materials by a German-French team of researchers, a thin layer of organic molecules can stabilize the magnetic orientation of a cobalt surface.

"This special interaction between organic molecules and metal surfaces could help to manufacture information storage systems in a more simple, flexible and cheaper way," explains Wulf Wulfhekel from KIT.

Microscopic magnets with constant orientation are used in hard disks, for example. With a view to "printable electronics", organic molecules indeed could open up new simple production methods utilizing the self-organization of molecules.

In the present study, three molecular layers of the dye phtalocynine were applied to the surface of ferromagnetic cobalt. Whereas the magnetic moments of the molecules alternatingly align relative to the cobalt and relative to each other, the molecules form a so-called antiferromagnetic arrangement.

The magnetic orientation of this combination of antiferromagnetic and ferromagnetic materials remains relatively stable even in the presence of external magnetic fields or cooling.

"Surprisingly, the "lightweight" molecule wins this magnetic arm wrestling with the "heavyweight" ferromagnetic material and determines the respective properties," Wulfhekel says. Systems of antiferromagnetic and ferromagnetic materials, among others, are used in hard disk reading heads.

So far, manufacturing of antiferromagnets has been quite complex and time-consuming. Should molecules be suitable for use in the production, the antiferromagnets one day will simply come out of the printer.

The present publication is the result of a cooperation of researchers from KIT, University of Strasbourg, and Synchrotron SOLEIL. First author Manuel Gruber was member of the German-French Graduate School "Hybrid Organic- Inorganic Nanostructures and Molecular Electronics", where different aspects of nanoelectronics, spintronics, and organic electronics are investigated.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Karlsruher Institut fur Technologie (KIT)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
ORNL makes scalable arrays of 'building blocks' for ultrathin electronics
Oak Ridge TN (SPX) Jul 27, 2015
Semiconductors, metals and insulators must be integrated to make the transistors that are the electronic building blocks of your smartphone, computer and other microchip-enabled devices. Today's transistors are miniscule--a mere 10 nanometers wide--and formed from three-dimensional (3D) crystals. But a disruptive new technology looms that uses two-dimensional (2D) crystals, just 1 nanomete ... read more


CHIP TECH
From building sites to cabbage patches in Spain's crisis

Trigger found for defense to rice disease

Greenhouse gas source underestimated from the US Corn Belt

Unlocking the rice immune system

CHIP TECH
New type of modulator for the future of data transmission

This could replace your silicon computer chips

Spintronics: Molecules stabilizing magnetism

Intel and Micron memory chip tuned to data driven age

CHIP TECH
MH370 clues mount as wreckage identified as Boeing 777

Airbus Helicopters announces factory acceptance of training aircraft

Harris, CPqD to support Brazilian Air Force air traffic control

Delta to buy stake in China Eastern Airlines for $450 mn

CHIP TECH
Uber valuation tops $50 bn with latest funding: report

Toyota falls behind VW in world's biggest automaker race

Nissan's three-month profit up 36% on sales in US, China

GM to invest $5 bn on new Chevrolet for emerging markets

CHIP TECH
WTO strikes 'landmark' deal to cut tariffs on IT products

British PM heads to Southeast Asia with trade, IS on agenda

Maldives to allow foreigners to own land

Wal-Mart buys remaining shares of Chinese firm Yihaodian

CHIP TECH
Mangroves help protect against sea level rise

China ire as Myanmar jails scores for illegal logging

Myanmar jails Chinese nationals for illegal logging: report

Controlled burns increase invasive grass in hardwood forests

CHIP TECH
Space-eye-view could help stop global wildlife decline

Satellites peer into rock 50 miles beneath Tibetan Plateau

Satellite imagery reveals Pilanesberg ring dike complex

Google lets users map their steps

CHIP TECH
Breakthrough in knowledge of how nanoparticles grow

On the way to breaking the terahertz barrier for graphene nanoelectronics

A most singular nano-imaging technique

Plantations of nanorods on carpets of graphene capture the Sun's energy




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.