GPS News  
SPACE MEDICINE
Spacebound Bacteria Inspire Earthbound Remedies

Pseudomonas aeruginosa can coexist as a benign microbe in healthy individuals, but poses a serious threat to people with compromised immune systems. It is the leading cause of death for those suffering from cystic fibrosis and is a serious risk to burn victims. However, a high enough dosage of Salmonella typhimurium always will cause disease, even in healthy individuals.
by Staff Writers
Washington DC (SPX) Mar 23, 2011
Recent research aboard the space shuttle is giving scientists a better understanding of how infectious disease occurs in space and could someday improve astronaut health and provide novel treatments for people on Earth.

"With our space-based research efforts, including the International Space Station, we are not only continuing our human presence in space, but we are engaged in science that can make a real difference in people's lives here on Earth," said NASA Administrator Charles Bolden. "NASA's leadership in human spaceflight allows us to conduct innovative and ground-breaking science that reveals the unknown and unlocks the mysteries of how disease-causing agents work."

The research involves an opportunistic pathogen known as Pseudomonas aeruginosa, the same bacterium that caused astronaut Fred Haise to become sick during the Apollo 13 mission to the moon in 1970.

Scientists studying the bacterium aboard the shuttle hope to unlock the mysteries of how disease-causing agents work. They believe the research can lead to advanced vaccines and therapies to better fight infections. The findings are based on flight experiments with microbial pathogens on NASA shuttle missions to the International Space Station and appear in a recent edition of the journal Applied and Environmental Microbiology.

"For the first time, we're able to see that two very different species of bacteria - Salmonella and Pseudomonas - share the same basic regulating mechanism, or master control switch, that micro-manages many of the microbes' responses to the spaceflight environment," said Cheryl Nickerson, associate professor at the Center for Infectious Diseases and Vaccinology, the Biodesign Institute at Arizona State University (ASU) in Tempe.

"We have shown that spaceflight affects common regulators in both bacteria that invariably cause disease in healthy individuals [Salmonella] and those that cause disease only in people with compromised immune systems [Pseudomonas]."

By studying the global gene expression patterns in bacterial pathogens like Pseudomonas and Salmonella, Nickerson's team learned more about how they react to reduced gravity.

Pseudomonas aeruginosa can coexist as a benign microbe in healthy individuals, but poses a serious threat to people with compromised immune systems. It is the leading cause of death for those suffering from cystic fibrosis and is a serious risk to burn victims. However, a high enough dosage of Salmonella typhimurium always will cause disease, even in healthy individuals.

During the initial study in 2006, two bacterial pathogens, Salmonella typhimurium and Pseudomonas aeruginosa, and one fungal pathogen, Candida albicans, were launched to the station aboard shuttles. They were allowed to grow in appropriately contained vessels for several days. Nickerson's team was the first to evaluate global gene and protein expression (how the bacteria react at the molecular level) and virulence changes in microbes in response to reduced gravity.

"We discovered that aspects of the environment that microbes encountered during spaceflight appeared to mimic key conditions that pathogens normally encounter in our bodies during the natural course of infection, particularly in the respiratory system, gastrointestinal system and urogenital tract," Nickerson said.

NASA's Advanced Capabilities Division Director, Benjamin Neumann added that, "This means that in addition to safeguarding future space travelers, such research may aid the quest for better therapeutics against pathogens here on Earth."

The initial study and follow-on space experiments show that spaceflight creates a low fluid shear environment, where liquids exert little force as they flow over the surface of cells.

The low fluid shear environment of spaceflight affects the molecular genetic regulators that can make microbes more infectious. These same regulators might function in a similar way to regulate microbial virulence during the course of infection in the human body.

"We have now shown that spaceflight conditions modified molecular pathways that are known to be involved in the virulence of Pseudomonas aeruginosa," said Aurelie Crabbe, a researcher in Dr. Nickerson's lab at ASU and the lead author of the paper.

"Future work will establish whether Pseudomonas also exhibits increased virulence following spaceflight as did Salmonella."

NASA's Fundamental Space Biology Program sponsored and funded the research conducted by Crabbe and Nickerson along with their colleagues at the Biodesign Institute at ASU. They collaborated with the University of Colorado School of Medicine, University of Arizona, Belgian Nuclear Research Center, Villanova University, Tulane University, Affymetrix Inc, and NASA scientists.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
NASA
Space Medicine Technology and Systems



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


SPACE MEDICINE
NASA Light Technology Helps Cancer Patients
Huntsville AL (SPX) Mar 04, 2011
A NASA technology originally developed for plant growth experiments on space shuttle missions has successfully reduced the painful side effects resulting from chemotherapy and radiation treatment in bone marrow and stem cell transplant patients. In a two-year clinical trial, cancer patients undergoing bone marrow or stem cell transplants were given a far red/near infrared Light Emitting Di ... read more







SPACE MEDICINE
Carbon Tax Must Not Comprise Food And Fibre Production

Major legal blow to European anti-GM crops lobby

Two Rivers Water Company Signs Agreement On 1000 Acres Of Farmland

France urges European controls on all Japanese produce

SPACE MEDICINE
'Quantum' computers said a step closer

Pruned' Microchips Are Faster, Smaller, More Energy-Efficient

Silicon Spin Transistors Heat Up And Spins Last Longer

3D Printing Method Advances Electrically Small Antenna Design

SPACE MEDICINE
Singapore Airlines to suspend half of Tokyo flights

NVision Scanner Helps Get Aircraft Accessories To Fit Right First Time

IATA sees sharp slowdown in Japan air traffic

Rolls-Royce forecasts helicopter boom

SPACE MEDICINE
The Drive Toward Hydrogen Vehicles Just Got Shorter

Toyota 'likely' to slow US production

Japan quake leads GM Korea to cut production

Nissan to monitor vehicles for radioactivity

SPACE MEDICINE
China could overtake US economy by 2030: WBank

Bosch wants to hire 24,000 workers in China

Ecotourism offering a feast of opportunities in Asia

Warren Buffett eyes India for investment

SPACE MEDICINE
Canada's unique wetlands under threat: report

Colombian Amazon village bans prying tourists

US scientists recruit crocodiles to save wetlands

Trading places: Kenyans swap carbon roles to save forest

SPACE MEDICINE
Thirst For Knowledge: NASA Eyes World's Water

NASA Global Hawk Takes Earth's Temperature Over Pacific Ocean

NASA IR Satellite Imagery Shows Cyclone Cherono Dwindling

France fines Google 100,000 euros over Street View

SPACE MEDICINE
Berkeley Lab Scientists Control Light Scattering In Graphene

New High-Resolution Carbon Mapping Techniques Provide More Accurate Results

Republican opposition to C02 regulations gain steam

EPA updates emissions, resource database


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement