GPS News  
Space Technology Benefits Medical Community

"In addition to monitoring Raynaud's patients, this platform technology could be used for an array of other medical or monitoring applications. The monitor could be modified to measure skin temperature of patients at risk for developing cardiovascular disease by tracking endothelial function (how small blood vessels regulate local blood flow to the tissues)."
by Staff Writers
Baltimore MD (SPX) Feb 01, 2007
A small group of APL researchers, in collaboration with physicians from the Johns Hopkins Scleroderma Center in Baltimore, developed and recently completed initial trials for a miniature device to help physicians characterize Raynaud's disease and measure treatment effectiveness.

"The Ambulatory Raynaud's Monitor is a tiny, Band-Aid-like device that enables physicians to objectively characterize a patient's condition, determine its severity and measure symptoms in real time," says Dr. Frederick Wigley, director of the Hopkins Scleroderma Center and one of the country's leading scleroderma experts, who asked the Johns Hopkins University Applied Physics Laboratory (APL), in Laurel, Md., to develop the device after reading about APL's work developing miniature devices for spacecraft.

"Until now, Raynaud's research has been crippled without such a device."

The small, low-cost monitor wraps around a patient's finger and is secured with a bandage or medical tape. It contains two sensors that alternately record skin and ambient temperatures - indicators of surface blood flow - every 36 seconds.

Interactive controls permit a patient to record the date and time of a suspected Raynaud's attack. A week's data is held by the monitor's electronics and is retained even if the device's power is unexpectedly interrupted.

Physicians can easily download data into a computer or PDA (personal digital assistant). Software developed by APL enables physicians to quickly and easily display and plot data, which could be done during a patient's appointment to provide real-time feedback. The monitoring system's batteries store enough energy to operate for several months, and devices can be cleaned and reinitialized for use with multiple patients.

Triggered by cold temperatures or stress, Raynaud's is characterized by numbness and coldness in the fingers, toes, ears and/or nose when blood vessels in those areas constrict during attacks. Insufficient blood flow near the skin's surface also causes patients to experience skin color changes and varying levels of discomfort.

Limited blood flow to the extremities can potentially lead to permanent loss of function. Raynaud's can occur on its own, or be secondary to another condition, such as auto-immune disorders like scleroderma or lupus.

The device recently underwent initial testing on patients with Raynaud's being treated at the Johns Hopkins Medical Institutions. Patients wore a monitor for one week in their homes, pressing an "event button" on the device to indicate when a Raynaud's event was occurring. The data - processed by APL engineers and evaluated by JHMI physicians - indicates Raynaud's events can be successfully identified.

Patients said the devices are comfortable and easy to use. "The data from this preliminary study suggests that the monitor can help scientists and physicians learn more about Raynaud's phenomenon and help investigators evaluate the effectiveness of drugs being developed to treat this disease," says APL's Binh Le, one of the inventors of the device.

Based on initial data, APL researchers have enhanced the monitor's design and are gearing up for the next round of trials at JHMI later this winter.

In addition to monitoring Raynaud's patients, this platform technology could be used for an array of other medical or monitoring applications. The monitor could be modified to measure skin temperature of patients at risk for developing cardiovascular disease by tracking endothelial function (how small blood vessels regulate local blood flow to the tissues).

Measuring skin temperature in various real-life situations may provide a noninvasive method to determine vascular responses in health and in various disease states.

With appropriate modifications, this monitoring system could also be used to track other physiological parameters, such as pulse rate and blood pressure, and transmit the information to remote call centers. Athletes, for example, could wear it to help measure their physiological performance throughout exercise routines.

Related Links
Applied Physics Laboratory
Advanced Medical Science For Earth and Beyond
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Turning Green Gunk To Gold, Anti-Cancer Gold
Ann Arbor MI (SPX) Jan 09, 2007
Combining synthetic chemistry techniques with a knowledge of the properties and actions of enzymes, scientists have been able to produce an exciting class of anti-cancer drugs originally isolated from blue-green algae. This accomplishment is expected to make it possible to produce enough of the promising drugs for use in clinical trials.







  • Anger As Britons Face Air Tax Hike
  • Bats In Flight Reveal Unexpected Aerodynamics
  • Lockheed Martin And Boeing Form Strategic Alliance To Promote Next-Gen Air Transportation System
  • Time to test the Guardian Missile Defense System For Commercial Aircraft

  • Multimedia Car Radio Of The Future
  • US Auto Giants Safe Under Bush Energy Plan
  • DLR Uses Existing Television Satellites For Wireless Reception In Cars
  • Split Over CO2 Limits For New Cars As EU Postpones Decision

  • Raytheon to Demonstrate Global Joint Interoperability Solutions During US-Japan Joint Exercise
  • Alcatel Wins Italian Military Communications Satellite Deal
  • Northrop Grumman Integrates All Phased Array Antennas On First Advanced EHF Flight Payload
  • Boeing And US Air Force Demonstrate Advanced Airborne Networking First

  • Czech Government Says No To US Missile Shield Referendum
  • US Missile Defense In Europe Could Threaten Russia
  • India Plans Patriot-Type Test For Prithvi
  • Polish Lawmakers To Debate US Missile Plan

  • Something New Under The Sun
  • Japan And Europe Agree To Slash Tuna Catch Amid Extinction Fears
  • Africa's Farmers Will Have Room To Grow
  • Critics Say Global Plan To Save Tuna Stocks Not Enough

  • New Orleans Coroner Finds No Sign Of Homicide In Katrina Mercy Killing Case
  • Floods! Fire! SERVIR
  • China Firms Say Quake-Hit Telecom Lines Repaired
  • Repairs To Quake-Hit Asia Internet Cables Delayed Again

  • First LISA Pathfinder Flight Unit Ready For Delivery On 8 February
  • Harris Successfully Demonstrates Super HF Antenna Control Unit in Extremely Adverse Sea Conditions
  • Theory Stretches The Limits Of Composite Materials
  • Space Inspires Fashion

  • Scientists Study Adhesive Capabilities Of Geckos To Develop Surveillance Or Inspection Robots
  • Japanese Women To Try Lipstick With Touch Of Button
  • First Soft-Bodied Robots Planned
  • Singapore Launches Contest To Build 'Urban Warrior' Robots

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement