Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
Solving a physics mystery: Those 'solitons' are really vortex rings
by Staff Writers
Seattle WA (SPX) Feb 07, 2014


An example of a vortex ring, also called a toroidal bubble, which dolphins create under water. The concept of vortex rings lies at the heart of new University of Washington physics research.

The same physics that gives tornadoes their ferocious stability lies at the heart of new University of Washington research, and could lead to a better understanding of nuclear dynamics in studying fission, superconductors and the workings of neutron stars.

The work seeks to clarify what Massachusetts Institute of Technology researchers witnessed when in 2013 they named a mysterious phenomenon - an unusual long-lived wave traveling much more slowly than expected through a gas of cold atoms. They called this wave a "heavy soliton" and claimed it defied theoretical description.

But in one of the largest supercomputing calculations ever performed, UW physicists Aurel Bulgac and Michael Forbes and co-authors have found this to be a case of mistaken identity: The heavy solitons observed in the earlier experiment are likely vortex rings - a sort of quantum equivalent of smoke rings.

"The experiment interpretation did not conform with theory expectations," said Bulgac. "We had to figure out what was really happening there. It was not obvious it was one thing or another - thus it took a bit of police work."

A vortex ring is a doughnut-shaped phenomenon where fluids or gases knot and spin in a closed, usually circular loop. The physics of vortex rings is the same as that which gives stability to tornadoes, volcanic eruptions and mushroom clouds. (Dolphins actually create their own vortex rings in water for entertainment.)

"Using state-of-the-art computing techniques, we demonstrated with our simulation that virtually all aspects of the MIT results can be explained by vortex rings" said Forbes, an UW affiliate professor who in January became an assistant professor of physics at Washington State University.

He said the simulations they used "could revolutionize how we solve certain physics problems in the future," such as studying nuclear reactions without having to perform nuclear tests. As for neutron stars, he said the work also could lead to a better understanding of "glitches," or rapid increases in such a star's pulsation frequency, as this may be due to vortex interactions inside the star.

"We are now at a cusp where our computational capabilities are becoming sufficient to shed light on this longstanding problem. This is one of our current directions of research - directly applying what we have learned from the vortex rings," Forbes said.

The computing work for the research - one of the largest direct numerical simulations ever - was performed on the supercomputer Titan, at the Oak Ridge Leadership Computing Facility in Tennessee, the nation's most powerful computer for open science. Work was also performed on the UW's Hyak high-performance computer cluster.

Bulgac and Forbes published their findings in a January issue of Physical Review Letters. Co-authors are Kenneth Roche of the Pacific Northwest National Laboratory and the UW; Gabriel Wlazlowski of the Warsaw University of Technology and the UW; and Michelle Kelley of the University of Illinois at Urbana-Champaign.

.


Related Links
by Peter Kelley for UW News
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Quarks in the looking glass
Washington DC (SPX) Feb 06, 2014
From matching wings on butterflies to the repeating six-point pattern of snowflakes, symmetries echo through nature, even down to the smallest building blocks of matter. Since the discovery of quarks, the building blocks of protons and neutrons, physicists have been exploiting those symmetries to study quarks' intrinsic properties and to uncover what those properties can reveal about the physica ... read more


TIME AND SPACE
Herbicides may not be sole cause of declining plant diversity

Uncovering the Drivers of Honey Bee Colony Declines and Losses

Grasshoppers are what they eat

US farmers, food interests unite against GMO labeling

TIME AND SPACE
Diamond defect boosts quantum technology

New Research Leads To Multifunctional Spintronic Smart Sensors

Ballistic transport in graphene suggests new type of electronic device

Integration brings quantum computer a step closer

TIME AND SPACE
WASP Gives NASA's Planetary Scientists New Observation Platform

A Faster, Simpler Way to Replace Obsolete Parts for B-2 Bomber

Raytheon to begin Phase 3 on DARPA Persistent Close Air Support program

Boeing, Saudi Airlines sign collaborative pact

TIME AND SPACE
Peugeot presses on with tie-up despite family split

Bicycle manufacturing increases in Indian state of Punjab

Toyota in high gear as it forecasts record profit

Improved catalytic converter said to improve mileage, cut emissions

TIME AND SPACE
Australian tycoon's tirade against Chinese firm

Venezuela businesses up in arms over moves to limit profits

Canada trade deficit rises to Can$1.7 bn

Panama Canal expansion work seen to be at risk after row

TIME AND SPACE
Puzzling 'greening' of Amazon rainforest in dry season an illusion

New Madagascar leader declares war on illegal logging

Trees diminished resistance to cyclones attributed to insects

Contraband trafficking ravages Central American forests

TIME AND SPACE
Swarm heads for new heights

ESA eSurge project delivered by CGI to help predict ferocity of UK coastal flooding

AGU and Wiley Launch Open Access Journal, Earth and Space Science

Trio of European satellites positioned to study Earth's magnetic field

TIME AND SPACE
Physicists at Mainz University build pilot prototype of a single ion heat engine

Quantum dots provide complete control of photons

New boron nanomaterial may be possible

Layered security: Carbon nanotubes promise improved flame-resistant coating




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement