Subscribe free to our newsletters via your
. GPS News .




EXO WORLDS
Solar system's youth gives clues to planet search
by Staff Writers
Washington DC (SPX) Jul 26, 2013


Stars are surrounded by disks of rotating gas during the early stages of their lives. Observations of young stars that still have these gas disks demonstrate that sun-like stars undergo periodic bursts, lasting about 100 years each, during which mass is transferred from the disk to the young star.

Comets and meteorites contain clues to our solar system's earliest days. But some of the findings are puzzle pieces that don't seem to fit well together. A new set of theoretical models from Carnegie's Alan Boss shows how an outburst event in the Sun's formative years could explain some of this disparate evidence. His work could have implications for the hunt for habitable planets outside of our solar system. It is published by The Astrophysical Journal.

One way to study the solar system's formative period is to look for samples of small crystalline particles that were formed at high temperatures but now exist in icy comets. Another is to analyze the traces of isotopes-versions of elements with the same number of protons, but a different number of neutrons-found in primitive meteorites.

These isotopes decay and turn into different, so-called daughter, elements. The initial abundances of these isotopes tell researchers where the isotopes may have come from, and can give clues as to how they traveled around the early solar system.

Stars are surrounded by disks of rotating gas during the early stages of their lives. Observations of young stars that still have these gas disks demonstrate that sun-like stars undergo periodic bursts, lasting about 100 years each, during which mass is transferred from the disk to the young star.

But analysis of particles and isotopes from comets and meteorites present a mixed picture of solar system formation, more complicated than just a one-way movement of matter from the disk to the star.

The heat-formed crystalline grains found in icy comets imply significant mixing and outward movement of matter from close to the star to the outer edges of the solar system. Some isotopes, such as aluminum, support this view. However, isotopes of the element oxygen seem to paint a different picture.

Boss' new model demonstrates how a phase of marginal gravitational instability in the gas disk surrounding a proto-sun, leading to an outburst phase, can explain all of these findings.

The results are applicable to stars with a variety of masses and disk sizes. According to the model, the instability can cause a relatively rapid transportation of matter between the star and the gas disk, where matter is moved both inward and outward. This accounts for the presence of heat-formed crystalline particles in comets from the solar system's outer reaches.

According to the model, the ratios of aluminum isotopes can be explained by the parent isotope having been injected in a one-time event into the planet-forming disk by a shock wave from an exploding star and then traveling both inward and outward in the disk. The reason oxygen isotopes are present in a different pattern is because they are derived from sustained chemical reactions occurring on the surface of the outer solar nebula, rather than from a one-time event.

"These results not only teach us about the formation of our own solar system, but also could aid us in the search for other stars orbited by habitable planets," Boss said. "Understanding the mixing and transport processes that occur around Sun-like stars could give us clues about which of their surrounding planets might have conditions similar to our own."

.


Related Links
Carnegie Institution
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO WORLDS
'Water-Trapped' Worlds
Moffett Field CA (SPX) Jul 19, 2013
A new study takes a deeper look into the fate of life-permitting water on Earth-like planets around red dwarf stars, the most common stars in the universe. Many of these exoplanets quickly become "tidally locked," with one side always facing their reddish star while the other side freezes in permanent night. The new research suggests that terrestrial, red dwarf-orbiting exoplanets with sig ... read more


EXO WORLDS
Climate Forecasts Shown to Warn of Crop Failures

Secret of plant geometry revealed

World changing technology enables crops to take nitrogen from the air

Western demand for cashmere said a threat to endangered Asian species

EXO WORLDS
Broadband photodetector for polarized light

Intel profits slide as chipmaker repositions

NIST shows how to make a compact frequency comb in minutes

New analytical methodology can guide electrode optimization

EXO WORLDS
Choosing a wave could accelerate airplane maintenance

Australia commissions MRH90 and new squadron

Georgia On Its Mind: Lockheed Martin Delivers First HC-130J to Moody Air Force Base

Northrop Grumman Delivers Center Fuselage for Italy's First F-35 Lightning I

EXO WORLDS
Hydrogen cars quickened by Copenhagen chemists

Toyota, Ford end hybrid partnership

LADWP Officials Announce Expanded Electric Vehicle Program

EU largely backs France in German Mercedes row/

EXO WORLDS
Myanmar revises controversial Chinese-backed mine deal

End of China boom a challenge, not a crisis: Australia

Anger over Spanish corruptioin spills into streets

Mercosur mired in row over Paraguay's suspension

EXO WORLDS
Boreal Forests in Alaska Becoming More Flammable

Oil palm genome boosts hopes for tropical forests

Loss of African woodland may impact on climate

US debt deal helps Philippines save forests

EXO WORLDS
First high-resolution national carbon map - Panama

NASA Releases Images of Earth Taken by Distant Spacecraft

e2v and Astrium sign contract for imaging sensors to equip the Sentinel 4 satellite

The First Interplanetary Photobomb

EXO WORLDS
New NIST nanoscale indenter takes novel approach to measuring surface properties

Desktop printing at the nano level

New nanoscale imaging method finds application in plasmonics

York Nanocentre researchers image individual atoms in a living catalytic reaction




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement