Subscribe free to our newsletters via your
. GPS News .




EARLY EARTH
Solar System Ice: Source of Earth's Water
by Staff Writers
Washington, DC (SPX) Jul 16, 2012


illustration only

Scientists have long believed that comets and, or a type of very primitive meteorite called carbonaceous chondrites were the sources of early Earth's volatile elements-which include hydrogen, nitrogen, and carbon-and possibly organic material, too.

Understanding where these volatiles came from is crucial for determining the origins of both water and life on the planet. New research led by Carnegie's Conel Alexander focuses on frozen water that was distributed throughout much of the early Solar System, but probably not in the materials that aggregated to initially form Earth.

The evidence for this ice is now preserved in objects like comets and water-bearing carbonaceous chondrites. The team's findings contradict prevailing theories about the relationship between these two types of bodies and suggest that meteorites, and their parent asteroids, are the most-likely sources of the Earth's water. Their work is published July 12 by Science Express.

Looking at the ratio of hydrogen to its heavy isotope deuterium in frozen water (H2O), scientists can get an idea of the relative distance from the Sun at which objects containing the water were formed.

Objects that formed farther out should generally have higher deuterium content in their ice than objects that formed closer to the Sun, and objects that formed in the same regions should have similar hydrogen isotopic compositions.

Therefore, by comparing the deuterium content of water in carbonaceous chondrites to the deuterium content of comets, it is possible to tell if they formed in similar reaches of the Solar System.

It has been suggested that both comets and carbonaceous chondrites formed beyond the orbit of Jupiter, perhaps even at the edges of our Solar System, and then moved inward, eventually bringing their bounty of volatiles and organic material to Earth. If this were true, then the ice found in comets and the remnants of ice preserved in carbonaceous chondrites in the form of hydrated silicates, such as clays, would have similar isotopic compositions.

Alexander's team included Carnegie's Larry Nitler, Marilyn Fogel, and Roxane Bowden, as well as Kieren Howard from the Natural History Museum in London and Kingsborough Community College of the City University of New York and Christopher Herd of the University of Alberta.

They analyzed samples from 85 carbonaceous chondrites, and were able to show that carbonaceous chondrites likely did not form in the same regions of the Solar System as comets because they have much lower deuterium content. If so, this result directly contradicts the two most-prominent models for how the Solar System developed its current architecture.

The team suggests that carbonaceous chondrites formed instead in the asteroid belt that exists between the orbits of Mars and Jupiter. What's more, they propose that most of the volatile elements on Earth arrived from a variety of chondrites, not from comets.

"Our results provide important new constraints for the origin of volatiles in the inner Solar System, including the Earth," Alexander said. "And they have important implications for the current models of the formation and orbital evolution of the planets and smaller objects in our Solar System."

.


Related Links
Carnegie Institution of Washington
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Fossil egg discovered in Spain links dinosaurs to modern birds
Barcelona, Spain (SPX) Jul 16, 2012
Before her death in December 2010, Nieves Lopez Martinez, palaeontologist of the Complutense University of Madrid, was working on the research of dinosaur eggs with a very peculiar characteristic: an ovoid, asymmetrical shape. Together with Enric Vicens, palaeontologist of the Universitat Autonoma de Barcelona, the two scientists conducted an exhaustive analysis of their discovery, recentl ... read more


EARLY EARTH
European grain prices rise on global drought

Tannins in sorghum and benefits focus of university, USDA study

Messy experiment cleans up physics mystery of cornstarch

From aflatoxin to sake

EARLY EARTH
Toward Achieving One Million Times Increase in Computing Efficiency

Intel pumps billions into computer chip tool maker

Japan's Renesas eyes $550 mn savings, cutting 5,000 jobs

Discovery of material with amazing properties

EARLY EARTH
Iraq seeks to speed up F-16 deliveries

Boeing Commends ICAO Progress on Developing a Global Aviation Carbon Standard

Raytheon and US Navy begin MALD-J Super Hornet integration

Lockheed Martin F-35 Flight Test Progress Report

EARLY EARTH
Calling all truckers ... not!

Skoda Auto posts record first-half sales on China surge

Carnegie Mellon's smart headlight system will have drivers seeing through the rain

EU push for car CO2 cuts faces industry, green criticism

EARLY EARTH
US hails WTO win vs. China on electronic payments

Sydney navy base opened to cruise ships

Australia's resource boom to decline?

Paraguay not facing suspension: OAS

EARLY EARTH
Rising CO2 in atmosphere also speeds carbon loss from forest soils

Taiwan indicts loggers for axing 2000-year-old trees

Study Slashes Deforestation Carbon Emission Estimate

Scientists develop first satellite deforestation tracker for whole of Latin America

EARLY EARTH
New eyes in the sky

IGARSS 2012 - 'Remote Sensing for a Dynamic Earth'

MSG-3 set to ensure quality of Europe's weather service from geostationary orbit

Images in an Instant: Suomi NPP Begins Direct Broadcast

EARLY EARTH
UK nanodevice builds electricity from tiny pieces

Ferroelectricity on the Nanoscale

Unprecedented subatomic details of exotic ferroelectric nanomaterials

Tiny bubbles snap carbon nanotubes like twigs




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement