. GPS News .




.
SOLAR DAILY
Solar Power Could Get Boost from New Light Absorption Design
by Sarah Ostman
Evanston IL (SPX) Nov 04, 2011

The researchers used two unconventional materials - metal and silicon oxide - to create thin but complex, trapezoid-shaped metal gratings on the nanoscale that can trap a wider range of visible light.

Solar power may be on the rise, but solar cells are only as efficient as the amount of sunlight they collect. Under the direction of a new McCormick professor, researchers have developed a new material that absorbs a wide range of wavelengths and could lead to more efficient and less expensive solar technology.

A paper describing the findings, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," was published Tuesday in the journal Nature Communications.

"The solar spectrum is not like a laser - it's very broadband, starting with UV and going up to near-infrared," said Koray Aydin, assistant professor of electrical engineering and computer science and the paper's lead author. "To capture this light most efficiently, a solar cell needs to have a broadband response. This design allows us to achieve that."

The researchers used two unconventional materials - metal and silicon oxide - to create thin but complex, trapezoid-shaped metal gratings on the nanoscale that can trap a wider range of visible light. The use of these materials is unusual because on their own, they do not absorb light; however, they worked together on the nanoscale to achieve very high absorption rates, Aydin said.

The uniquely shaped grating captured a wide range of wavelengths due to the local optical resonances, causing light to spend more time inside the material until it gets absorbed. This composite metamaterial was also able to collect light from many different angles - a useful quality when dealing with sunlight, which hits solar cells at different angles as sun moves from east to west throughout the day.

This research is not directly applicable to solar cell technology because metal and silicon oxide cannot convert light to electricity; in fact, the photons are converted to heat and might allow novel ways to control the heat flow at the nanoscale. However, the innovative trapezoid shape could be replicated in semiconducting materials that could be used in solar cells, Aydin said.

If applied to semiconducting materials, the technology could lead to thinner, lower-cost, and more efficient solar cells, he said.

Aydin comes to McCormick from the California Institute of Technology, where this research was conducted in the group of Professor Harry Atwater and supported by the DOE Light-Material Interactions Energy Frontier Research Center (EFRC).

While at Caltech, Aydin served as a research scientist in applied physics and materials science and as the assistant director of the DOE Light-Material Interactions EFRC. Previously Aydin received his BS and PhD in physics from Bilkent University in Ankara, Turkey.

He said he was drawn to Northwestern because of its collaborative work environment and its proximity to unmatched facilities, such as Argonne National Laboratory.

"When I came to interview in the electrical engineering department at McCormick, I interviewed with not just that department's faculty, but also met with members of the materials science department," Aydin said. "That showed me how much the school values collaboration and interdisciplinary interactions."

This fall, Aydin is teaching an undergraduate course, EECS 223, Fundamentals of Solid State Engineering, and is looking forward to involve undergraduate students in active research.

Related Links
McCormick Northwestern
All About Solar Energy at SolarDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



SOLAR DAILY
SunPower Partners with Orchard Supply Hardware to Offer High Efficiency Solar Power Systems
San Jose CA (SPX) Nov 04, 2011
SunPower has announced it is offering its high efficiency solar power systems to Orchard Supply Hardware customers via information displays at Orchard Supply Hardware's California stores and at www.OSH.com. The displays and online information describe the features of SunPower residential solar technology, the process for installing a home solar power system, and information on contacting a local ... read more


SOLAR DAILY
Cultural thirst drives China's high-end tea boom

Asia's largest wine fair kicks off in Hong Kong

Cattle parasite vaccine offers hope to world's poorest farmers

Cambodian floods spark shortage of rat meat: PM

SOLAR DAILY
The world's most efficient flexible OLED on plastic

AMD cutting 10 percent of workforce

A KAIST research team has developed a fully functional flexible memory

UCSB physicists identify room temperature quantum bits in widely used semiconductor

SOLAR DAILY
Aviation grappling with new taxes and rules: AAPA

EU sticks to airline carbon rules despite UN opposition

Asia airline body raps EU plan for carbon tax

OGC Team Produces Winning Single European Sky Aviation Proposal

SOLAR DAILY
US flying car maker eyes India, Brazil, China

GM says may block Saab sale to Chinese companies

Toyota, Nissan extend Thai flood production halts

Volkswagen takes last hurdle in acquisition of MAN

SOLAR DAILY
China says imports to equal exports over five years

N. Korea mineral exports to China triple: report

Kirin takes control of Brazilian brewer Schincariol

Peru forges ahead with gold, copper mine

SOLAR DAILY
Forests not keeping pace with climate change

Niger capital's 'green lung' facing suffocation

Savannas, forests in a battle of the biomes

Gibson Guitar boss backs tough timber trade rules

SOLAR DAILY
NASA Launches JPL-Built Earth Science Experiment

Halloween Weekend Snow Paints a Ghostly Picture in the U.S. Northeast

Landsat's TIRS Instrument Comes Out of First Round of Thermal Vacuum Testing

Small but agile Proba-1 reaches 10 years in orbit

SOLAR DAILY
Graphene grows better on certain copper crystals

New method of growing high-quality graphene promising for next-gen technology

Giant flakes make graphene oxide gel

Amorphous diamond, a new super-hard form of carbon created under ultrahigh pressure


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement