GPS News  
TECH SPACE
Smart machine components alert users to damage and wear
by Staff Writers
Storrs CT (SPX) Aug 02, 2018

Scientists at UConn and the United Technologies Research Center used direct write technology, an advanced form of additive manufacturing, to create a novel sensor that can be embedded into machine components while they are being made. The sensors can detect and report wear and damage to a part to the machine's user.

Scientists at the United Technologies Research Center and UConn used advanced additive manufacturing technology to create 'smart' machine components that alert users when they are damaged or worn.

The researchers also applied a variation of the technology to create polymer-bonded magnets with intricate geometries and arbitrary shapes, opening up new possibilities for manufacturing and product design.

The key to both innovations is the use of an advanced form of 3D printing called direct write technology. Unlike conventional additive manufacturing, which uses lasers to fuse layers of fine metal powder into a solid object, direct write technology uses semisolid metal 'ink' that is extruded from a nozzle. The viscosity of the metal ink looks like toothpaste being squeezed from a tube.

This process allowed the UConn-UTRC scientists to create fine lines of conductive silver filament that could be embedded into 3D printed machine components while they were made. The lines, which are capable of conducting electric current, act as wear sensors that can detect damage to the part.

Here's how they work. Parallel lines of silver filament, each coupled with a tiny 3D-printed resistor, are embedded into a component. The interconnected lines form an electrical circuit when voltage is applied. As lines are embedded deeper and deeper into a component from the surface, each new line and resistor are assigned an increasingly higher voltage value. Any damage to the component, such as wear or abrasion caused by friction from moving parts, would cut into one or more of the lines, breaking the circuit at that stage. The more lines that are broken, the greater the damage. Real time voltage readings allow engineers to assess potential damage and wear to a component without having to take an entire machine apart.

To get a better idea of how these micro sensors could be used, imagine them being embedded in the ceramic coating of a jet engine turbine fan blade. These blades are subjected to tremendous physical forces and heat. A microscopic crack in the protective coating could potentially be catastrophic to the blade's performance, yet invisible to the naked eye. With the embedded sensors, mechanics would be alerted to any blade damage promptly so it can be addressed.

"This changes the way we look at manufacturing," says Sameh Dardona, Associate Director of Research and Innovation at UTRC, which serves as the innovation engine for United Technologies Corp. "We can now integrate functions into components to make them more intelligent. These sensors can detect any kind of wear, even corrosion, and report that information to the end user. This helps us improve performance, avoid failures, and save costs."

The UConn-UTRC team was able to embed sensor lines that were just 15 microns wide and 50 microns apart. That's much thinner than an average human hair, which is about 100 microns. This allows detection of very minute damage.

Developing such a precise sensor isn't easy. UConn Associate Professor of Chemical and Biomolecular Engineering Anson Ma and a Ph.D. student from Ma's Complex Fluids Laboratory, Alan Shen, measured and optimized the flow properties of the silver-infused ink so that micron-sized lines could be reliably deposited without clogging the nozzle or causing substantial spreading after deposition.

UTRC's Dardona has applied for a patent for the embedded wear sensor technology.

The scientists also used direct write technology to create novel components that have magnetic coatings or magnetic material embedded inside them. These polymer-bonded magnets are capable of conforming to any variety of shape, and eliminate the need for separate housings in machines requiring magnetic parts.

"This opens up a lot of exciting opportunities," says Ma. "Imagine magnets that can take on different shapes and fit seamlessly between other functional components. Also, the resultant magnetic field that is created may be further manipulated and optimized by changing the shape of the magnets."

The magnet fabrication method developed by UConn and UTRC significantly improves upon existing manufacturing practices in other ways too. Current methods for creating custom 3D-printed magnets rely on high-temperature curing, which unfortunately reduces a material's magnetic properties as a result. The scientists at UConn and UTRC found a way around that problem by using low-temperature UV light to cure the magnets, similar to how a dentist uses UV light to harden a filling. The resultant magnets exhibited significantly better performance than magnets created by other additive manufacturing methods.

Magnets have a wide range of industrial applications, from creating electric currents in alternators to tracking the position or speed of moving parts as high-grade sensors. Embedding magnetic material directly into components could lead to new product designs that are more aerodynamic, lighter, and efficient, Dardona says.

"This is a great example of collaboration between industrial research and academic research," he says. "We always have new concepts that we'd like to explore. This collaboration allowed us to leverage the knowledge, expertise, and facilities available at UConn to help us address some of these technological challenges."

The collaboration also benefits UConn. Shen, the Ph.D. student in Ma's lab, served as a lead researcher on the two projects, developing, testing, and re-testing the new technology over the past three years.

"These kinds of collaborations allow us to help companies like UTC develop new technologies that we know they are going to take to the next level," says Ma. "It's also very rewarding for our students. Students involved in these projects are fully integrated into the research team. It's not only great from a workforce development perspective; it also gives students a chance to work closely with professional engineers in a beautiful facility like UTRC."

Research paper


Related Links
University of Connecticut
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
US judge blocks release of 3D gun blueprints amid uproar
Chicago (AFP) Aug 1, 2018
A US judge on Tuesday temporarily blocked the online publication of blueprints for 3D-printed firearms, in a last-ditch effort to stop a settlement President Donald Trump's administration had reached with the company releasing the digital documents. Eight states and the District of Columbia, which houses the capital Washington, had filed a lawsuit against the federal government, calling its settlement with Texas-based Defense Distributed "arbitrary and capricious." The Trump administration had s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
To keep more carbon on the ground, halting farmland expansion is key

Record drought grips Germany's breadbasket

Murkowksi: Tariffs hurt more than just agriculture

Wildfires, drought hit Sweden's Sami reindeer herders

TECH SPACE
EPFL uses excitons to take electronics into the future

World-first quantum computer simulation of chemical bonds using trapped ions

China 'waterfall' skyscraper hit by torrent of ridicule

Reversing cause and effect is no trouble for quantum computers

TECH SPACE
First Apache, Chinook helicopters for India take first flights

Lockheed receives contract for LANTIRN targeting and navigation pods

BAE receives contract for airborne electronic warfare jammers

Iraqi Airways suspends pilots who fought in-flight over food

TECH SPACE
Uber hits brakes on self-driving trucks

EU carmakers 'inflating' emissions to skew carbon targets

Uber resumes testing for autonomous cars in 'manual mode'

GM launches peer-to-peer car sharing service on rental platform

TECH SPACE
Trump could raise tariffs further on Chinese goods: reports

UK's Hunt welcomes China's offer of talks on post-Brexit trade deal

China manufacturing activity eases in July

Australia, US, Japan in Indo-Pacific infrastructure push

TECH SPACE
Watchdog urges China to clamp down on imports of illegal timber

Tropical forests may soon hinder, not help, climate change effort

Fires spark biodiversity criticism of Sweden's forest industry

Behold the Amazonian eco-warrior drag queen

TECH SPACE
What is causing more extreme precipitation in the northeast?

Satellite tracking reveals Philippine waters are important for endangered whale sharks

Satellite maps reveal spread of mountaintop coal mining in Appalachia

Preparing to fly the wind mission Aeolus

TECH SPACE
Researchers use nanotechnology to improve the accuracy of measuring devices

A new 'periodic table' for nanomaterials

Physicists uncover why nanomaterial loses superconductivity

Squeezing light at the nanoscale









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.