GPS News  
WATER WORLD
Small landscape changes can mean big freshwater gains
by Staff Writers
Madison WI (SPX) Nov 23, 2015


Gardner Marsh at the University of Wisconsin-Madison Arboretum is pictured in a view from a helicopter in October 2011. On the horizon are the buildings of the UW-Madison campus and downtown Madison skyline. Image courtesy Jeff Miller.

A typical bird's-eye view of the Midwest offers a patchwork landscape covered mostly by agriculture but mottled with forest, wetland, grassland, buildings and pavement. This pattern influences the quality and supply of the many natural benefits the landscape provides people, including freshwater.

A new opportunity for improving the health and supply of Wisconsin's lakes, waterways and groundwater has emerged from a recent study in the journal Ecosphere by the University of Wisconsin-Madison's Water Sustainability and Climate Project.

Making small tweaks to how large some of those patches in the pattern are could mean big freshwater benefits, especially where making drastic changes to the landscape would be hard, as is the case throughout much of the state.

"Our findings have important implications for managing and restoring landscapes to enhance the goods and services water provides us," says Jiangxiao Qiu, the study's lead author and a graduate student in the Department of Zoology.

A landscape pattern consists of its composition, or the kinds and amounts of land-cover patches, and its configuration, or the layout of those patches. Qiu and co-author Monica Turner, the Eugene P. Odum Professor of Ecology and Vilas Research Professor of Zoology, found that while both composition and configuration matter, a landscape's composition has a stronger influence on water quality and supply.

"Altering the arrangement of the land-cover patches is not enough to improve freshwater services. You need to change their types and proportions," says Qiu, clarifying that their findings are specific to landscapes that are predominantly agricultural, such as their study site, Wisconsin's Yahara Watershed. Different landscapes could have different results.

While the implications of their findings apply to the three freshwater services they studied - surface water quality, groundwater quality, and groundwater supply - Qiu says adjusting the landscape composition may be most effective for enhancing surface water quality.

Landscape pattern influences how nutrients - especially phosphorus and nitrogen - move from land to water, subsequently impacting water quality. Natural buffers placed between cropland and lakes and streams can help protect the water from nutrients that erode from the land. These include nutrient-grabbing forests and prairies.

In fact, Qiu and Turner found that reducing the amount of cropland to below 60 percent or restoring wetlands to above six percent of a given area could bring about significant improvements to surface water quality.

But Qiu and Turner aren't calling for slashing cornfields or removing city blocks. Instead, they say it is possible to get big gains in freshwater benefits by making small changes in targeted places, such as adding rain gardens or parks to urban areas.

"When we make changes in our landscapes, it's nice when we can get the most out of those changes, increasing the benefits we get from nature while minimizing costs," says Turner.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Wisconsin-Madison
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Researchers discover sediment size matters in high-elevation erosion rates
Laramie WY (SPX) Nov 23, 2015
When it comes to sediment in the High Sierra, size does matter, according to two University of Wyoming researchers. For the past four summers, Cliff Riebe, a UW associate professor in the Department of Geology and Geophysics, and Claire Lukens, a UW doctoral student majoring in geology, have studied sediment in Inyo Creek, in the High Sierra in California. The two found that cold, steep, h ... read more


WATER WORLD
South American origins and spread of the Irish potato famine pathogen

High yield crops a step closer in light of photosynthesis discovery

Going native - for the soil

FDA okays GM salmon for sale in the United States

WATER WORLD
Superconductor survives ultra-high magnetic field

Researchers implant organic electronics inside plants

Electrons always find a quantum way

New class of materials for organic electronics

WATER WORLD
Russian company to help Iran with helicopter repair facility

U.S. Air Force deploys upgraded E-3 Sentry to combat theater

Russia, China agree $2 bln deal for 24 Su-35 warplanes: state firm

Crack discovered on F-35 test plane

WATER WORLD
Tesla recalls all Model S cars worldwide for seatbelt fix

VW puts off China investment amid costly emissions scandal

US regulator deepens crisis at VW in emissions probe

GM to make fuel cell pickup truck for US military

WATER WORLD
Metal prices slide on strong dollar, China woes

Xi warns of rival free trade pact 'fragmentation'

Pakistan army chief heads to US as pressure grows over Afghanistan

China splurges on world's biggest online shopping spree

WATER WORLD
Half of Amazon tree species in danger: study

Brazil cut C02 emissions through less deforestation: NGO

Carbon accumulation by US forests may slow over the next 25 years

Scientists date the origin of the cacao tree to 10 million years ago

WATER WORLD
RippleNami helps visualize change in Africa with its customizable mapping platform

RapidScat Celebrates One-Year Anniversary

Excitement Grows as NASA Carbon Sleuth Begins Year Two

NASA to fly, sail north to study plankton-climate change connection

WATER WORLD
Light wave technique an advance for optical research

Nanostructuring technology can simultaneously control heat and electricity

Rice makes light-driven nanosubmarine

Novel 'crumpling' of hybrid nanostructures increases SERS sensitivity









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.