Subscribe free to our newsletters via your
. GPS News .




SHAKE AND BLOW
Slow earthquakes may foretell larger events
by Staff Writers
University Park PA (SPX) Aug 20, 2013


Scanning electron microscope images showing localized shear surfaces in cross-section and oblique view. Sense of shear is top to the right. Note striations on shear surface. Similar patterns appear with serpentine. Credit: Haines, S. H.; Kaproth, B.; Marone, C.; Saffer, D. and B. A. van der Pluijm.

Monitoring slow earthquakes may provide a basis for reliable prediction in areas where slow quakes trigger normal earthquakes, according to Penn State geoscientists.

"We currently don't have any way to remotely monitor when land faults are about to move," said Chris Marone, professor of geophysics.

"This has the potential to change the game for earthquake monitoring and prediction, because if it is right and you can make the right predictions, it could be big."

Marone and Bryan Kaproth-Gerecht, recent Ph.D. graduate, looked at the mechanisms behind slow earthquakes and found that 60 seconds before slow stick slip began in their laboratory samples, a precursor signal appeared.

Normal stick slip earthquakes typically move at a rate of three to 33 feet per second, but slow earthquakes, while they still stick and slip for movement, move at rates of about 0.004 inches per second taking months or more to rupture. However, slow earthquakes often occur near traditional earthquake zones and may precipitate potentially devastating earthquakes.

"Understanding the physics of slow earthquakes and identifying possible precursory changes in fault zone properties are increasingly important goals," the researchers report on line in the August 15 issue of Science Express.

Using serpentine, a common mineral often found in slow earthquake areas, Marone and Kaproth-Gerecht performed laboratory experiments applying shear stress to rock samples so that the samples exhibited slow stick slip movement.

The researchers repeated experiments 50 or more times and found that, at least in the laboratory, slow fault zones undergo a transition from a state that supports slow velocity below about 0.0004 inches per second to one that essentially stops movement above that speed.

"We recognize that this is complicated and that velocity depends on the friction," said Marone. "We don't know for sure what is happening, but, from our lab experiments, we know that this phenomenon is occurring."

The researchers think that what makes this unusual pattern of movement is that friction contact strength goes down as velocity goes up, but only for a small velocity range.

Once the speed increases enough, the friction contact area becomes saturated. It can't get any smaller and other physical properties take over, such as thermal effects. This mechanism limits the speed of slow earthquakes. Marone and Kaproth-Gerecht also looked at the primary elastic waves and the secondary shear waves produced by their experiments.

"Here we see elastic waves moving and we know what's going on with P and S waves and the acoustic speed," said Marone. "This is important because this is what you can see in the field, what seismographs record."

Marone notes that there are not currently sufficient measuring devices adjacent to known fault lines to make any type of prediction from the precursor signature of the movement of the elastic waves. It is, however, conceivable that with the proper instrumentation, a better picture of what happens before a fault moves in slip stick motion is possible and perhaps could lead to some type of prediction.

.


Related Links
Penn State
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SHAKE AND BLOW
Powerful quake jolts major New Zealand cities
Wellington (AFP) Aug 16, 2013
A powerful earthquake rattled major cities across New Zealand on Friday, sending terrified office workers fleeing as central Wellington shook "like jelly", but authorities reported no major damage. The 6.5-magnitude quake struck at 2:31 pm (0231 GMT) near an area where a series of quakes hit last month, the US Geological Survey said. It was felt from Christchurch in the South Island to Auckl ... read more


SHAKE AND BLOW
New contamination scare hits N. Zealand dairy industry

Even for cows, less can be more

Soil biodiversity crucial to future land management and response to climate change

Researchers discover protein that helps plants tolerate drought, flooding, other stresses

SHAKE AND BLOW
Scientists Find Asymmetry in Topological Insulators

Speed limit set for ultrafast electrical switch

NRL Researchers Discover Novel Material for Cooling of Electronic Devices

Nanotechnology breakthrough is big deal for electronics

SHAKE AND BLOW
Russia sells Vietnam 12 Sukhoi fighters: report

US bomber crashes in Montana

Study finds brain lesions in spy plane pilots

Report: EADS dropped from $7.3 bn S. Korea jet fighter bid

SHAKE AND BLOW
Waze traffic app integrated in Google Maps

High temperature capacitor could pave the way for electric vehicle

China vehicle sales growth slows in July

S. Korea tests 'electric road' for public buses

SHAKE AND BLOW
Aluminium giant Rusal posts 1H net loss of $439 mn

New shipping route shows China's Arctic ambitions

Paraguay snub adds to Maduro's problems

Global gold demand down to a four-year-low

SHAKE AND BLOW
One tree's architecture reveals secrets of a forest

Could planting trees in the desert mitigate climate change

Wasps being used to fight tree disease

Drought making trees more susceptible to dying in forest fires

SHAKE AND BLOW
Thai villagers mistake Google worker for government snoop

Norway says no to Apple request to photograph Oslo for 3-D maps

Africa's ups and downs

Lockheed Completes Solar UV Imager For GOES-R Enviro Tests

SHAKE AND BLOW
First time: NJIT researchers examine dynamics of liquid metal particles at nanoscale

SU Chemists Develop 'Fresh, New' Approach to Making Alloy Nanomaterials

Heterogeneous nanoblocks give polymers an edge

Size matters in nanocrystals' ability to adsorb release gases




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement