GPS News  
ENERGY TECH
Sieving carbons: Ideal anodes for high-energy sodium-ion batteries
by Staff Writers
Tianjin, China (SPX) Jul 06, 2022

stock image only

The exponentially increasing implementation of renewable energy systems, such as wind and solar energy, are urgently demanding the development of large-scale energy storage devices with flexibility, high energy conversion efficiency, and simple maintenance. Among diverse candidates, due to the natural abundance and low cost of sodium reserves, sodium-ion batteries (SIBs) have recently captured widespread attention from both the academia and industry as a sustainable supplement to lithium-ion batteries (LIBs).

Non-graphitic carbons are the most promising anode candidates for SIBs. However, challenged by their variable and complicated microstructures, what is the ideal carbon anode for SIBs that can play a similar role to what graphite does in lithium-ion batteries and how to rationally design the ideal carbon anodes are fundamental but remains poorly understood. This inevitably impedes the commercialization of SIBs.

Led by Prof. Quan-Hong Yang, Dr. Jun Zhang (Tianjin University) and Prof. Yong Yang (Xiamen University), a recent study proposed sieving carbons (SCs), featuring highly tunable nanopores with the tightened pore entrance, as the practical anodes for high-energy SIBs with the extensible and reversible low-potential charge/discharge plateaus (LPPs, <0.1 V vs. Na+/Na).

This study showed that the small pore entrance diameter (<0.4 nm) helped screen out the solvated sodium ions and induce the formation of solid electrolyte interphase (SEI) mainly outside the nanopores. By using SCs as the ideal carbon models for investigating the mechanism related to the LPPs, it was shown that bare sodium ions firstly adsorbed on the defective pore surface, and aggregated to finally form the quasi-metallic sodium clusters inside nanopores.

With spectroscopic and theoretical studies, an approximately linear correlation between the specific surface area in SCs and the plateau capacity was revealed, leading to a record-high plateau capacity of 400 mAh g-1.

A pore body diameter with an upper limit (~2.0 nm) was further proved to guarantee the reversibility of the LPPs, critical for enhancing the cycling stability of SC anodes. More promisingly, the reported way of preparing SCs was potential to be scalable for modifying commercial porous carbons to be practical anode materials, paving the way for the rapid commercialization of SIBs.

"The proposed sieving carbons is a conceptual advance for the carbon anode design for high-energy SIBs, and potential to play a similar role to what graphite does in lithium-ion batteries." Prof. Quan-Hong Yang said, "The structural tunability makes sieving carbons also promising for practical use in high-energy or high-power lithium-ion batteries, potassium-ion batteries and so on."

Research Report:Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries


Related Links
Tianjin University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion
Beijing, China (SPX) Jul 06, 2022
Lithium-sulfur batteries have for some time promised to be the successor to lithium-ion batteries, as they offer a fantastic capacity-the amount of electric charge a battery can deliver at a given voltage-at least in principle. But so far in practice, they have not at all lived up to their promise. Two opposing approaches, both aiming at reducing the volume of electrolyte required, potentially offer a pathway to solving the problem. A new review paper compares the two options and considers the applicati ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Amazon, Just Eat deal to offer free Grubhub delivery in US

Ploughing and tilling soil on slopes is jeopardizing future farm yields

Wildfire threatens major Greek olive grove

China mulls dipping into pork reserves to rein in costs

ENERGY TECH
Giant Rashba semiconductors show unconventional dynamics

Physicists work to shrink microchips with first one-dimensional helium model system

A four-stroke engine for atoms

Electrospinning promises major improvements in wearable technology

ENERGY TECH
Hong Kong suspends 'not effective' Covid flight ban

The hawk has landed: Braking mid-air to prioritize safety over energy or speed

Chinese airlines buy 292 planes from Airbus for total of $37 bn

Poland buys 32 attack helicopters from Italy's Leonardo

ENERGY TECH
New traffic device leaves Hong Kong pedestrians red in the face

Tesla deliveries fall with temporary closure of China factory

Range extenders: solar panels provide more juice to EVs

EU approves end of combustion engine sales by 2035

ENERGY TECH
Australia reports no progress on China trade sanctions

Asian stocks up as recession fears ease, yen rises after Abe shooting

Australia seeks end to trade rows in China meeting

Urban warming could cause major damage to global economy, study says

ENERGY TECH
The Gambia bans timber exports after smuggling fears

Brazil sets new six-month Amazon deforestation record

Indigenous farewell for expert killed in Amazon

Funeral held in Brazil for slain British journalist

ENERGY TECH
Physics professor selected for NASA mission

Earth from Space: Patagonia

NASA aircraft conducting atmospheric studies over DC to Baltimore

Researchers measure atmospheric water vapor using open-air spectroscopy

ENERGY TECH
A mirror tracks a tiny particle

New silicon nanowires can really take the heat

Cooling speeds up electrons in bacterial nanowires

Seeing more deeply into nanomaterials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.