GPS News  
TIME AND SPACE
Shining light on low-energy electrons
by Staff Writers
Washington DC (SPX) Jun 16, 2017


The optical cavity effects in a bare core particle (upper) and a core particle coated with a shell (upper). Shown are variations in the square of the local light intensity I2, which can be used to spatially control the generation of electrons. Credit Stavros Amanatidis, Bruce Yoder and Ruth Signorell

The scientific community has known about the existence of electrons for over a hundred years, but there are important facets of their interaction with matter that remain shrouded in mystery.

One particular area of interest is low-energy electrons or electrons that have kinetic energy levels of about 10 electronvolts (eV) or less. These electrons affect the functioning of insulators in electronic systems and are responsible for radiation damage in human and other biological tissue.

The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance. This happens by directing a stream of electrons at the layer and analyzing the subsequent deviations in the electrons' trajectories.

"High-energy electrons primarily interact with the individual atoms in a substance and their scattering can be predicted by existing generalized models," said Ruth Signorell, a professor of physical chemistry at ETH Zurich, the Swiss Federal Institute of Technology.

"In contrast, low-energy electrons interact with the whole molecular network, which includes the chemical bonds and vibrational motion of the atoms within the substance, and their scattering is currently too complex to predict with a model. With this in mind, we have been developing an alternative approach to measuring the movement of low-energy electrons."

Signorell and her colleagues explain their work this week in The Journal of Chemical Physics, from AIP Publishing.

"One of our key ideas has been the development of a technique we call the 'aerosol overlayer method'. It involves generating aerosol droplets that consist of a solid core and a shell made of organic materials that mimic some of the polymers one would find in electronics.

"Working with these droplets in a vacuum, we can use laser light to induce the core to release electrons that travel through the shell. When they reach the surface and escape, we can measure different metrics such as their intensity," Signorell said.

"The aerosol overlayer method offers two major advantages," Signorell said. "First, it makes it easier to separate the issues of the transport of electrons through the shell versus their formation in the core.

"Second, droplets with a size comparable to the wavelength of the laser act as resonators for the laser light. This can be exploited to generate a wealth of additional information on the interaction of electrons with matter."

"The major challenge of this method is accurately determining the size of the core and shell of the aerosol particles. While it is still difficult to measure these quantities, the accuracy of the measurements affects the accuracy of the scattering information that is generated," Signorell said.

Going forward, Signorell and her colleagues are interested in broadening the scope of their work with the aerosol overlayer method.

"We want to apply the aerosol overlayer method to different materials of varied thicknesses. We are particularly interested in very thin shells and how their structural changes affect the escape of electrons from the droplet's surface. This is potentially very relevant for researchers investigating scientific questions related to the surfaces and interfaces of different substances," Signorell said.

"With all of this work, we hope to fully analyze the broad range of experimental data that can be generated so that we can learn more about the movement of low-energy electrons."

The article, "Low-energy photoelectron transmission through aerosol layers," is authored by Stavros Amanatidis, Bruce Yoder and Ruth Signorell. The article will appear in The Journal of Chemical Physics June 13, 2017 [DOI: 10.1063/1.4983995].

TIME AND SPACE
Muon magnet's moment has arrived
Chicago IL (SPX) Jun 05, 2017
What do you get when you revive a beautiful 20-year-old physics machine, carefully transport it 3,200 miles over land and sea to its new home, and then use it to probe strange happenings in a magnetic field? Hopefully you get new insights into the elementary particles that make up everything. The Muon g-2 experiment, located at the U.S. Department of Energy's (DOE) Fermi National Accelerat ... read more

Related Links
American Institute of Physics
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Spain's 'jamon' conquers China

Scientists design laser to kill weeds

Study predicts where global warming is likely to spark food violence

Culls, poultry transport ban as S. Korea fights bird flu outbreak

TIME AND SPACE
Nitrides in Transition

Seeing the invisible with a graphene-CMOS integrated device

Building 'OLEDs' from the ground up for better electronics

Engineer unveils new spin on future of transistors with novel design

TIME AND SPACE
China Eastern plane makes emergency landing in Australia

China rolls out export trainer/fighter aircraft

Elbit supplying F-35 cockpit display replacement

Mitsubishi completes construction of first F-35A

TIME AND SPACE
Embattled Uber CEO Kalanick to take leave of absence

Scientists inch closer to wirelessly charging moving electric vehicles

Mumbai's adored Padmini taxis near the end of the road

Uber loses key executive as inquiry report looms

TIME AND SPACE
Britain can stay in EU but perks will end: Verhofstadt

China factory output rises in May but officials guarded

IMF raises China growth forecast, urges faster reforms

ECB swaps some dollar reserves for renminbi

TIME AND SPACE
Activists block logging in Poland's ancient forest

Decomposing leaves are surprising source of greenhouse gases

Forensic analysis of wood's chemical signatures could curb illegal logging

Canada provides Can$867 mn to beleaguered softwood sector

TIME AND SPACE
NASA satellites image, measure Florida's extreme rainfall

The heat is on for Sentinel-3B

exactEarth Launches Revolutionary Global Real-Time Maritime Tracking and Information Service

Earth is a jewel, says astronaut after six months away

TIME AND SPACE
Nanotechnology reveals hidden depths of bacterial 'machines'

UNIST researchers engineer transformer-like carbon nanostructure

Sensing the nanoscale with visible light, and the fundamentals of disordered waves

Nanosized silicon heater and thermometer combined to fight cancer









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.