Subscribe free to our newsletters via your
. GPS News .




EARTH OBSERVATION
Seeing the bedrock through the trees
by Staff Writers
Berkeley CA (SPX) May 06, 2014


Weathered rock (light brown), an often thick layer of fractured rock underlying the thin veneer of soil (dark brown) and just above the impermeable bedrock (gray), can hold more water than soil and plays a major role in determining runoff, landslides and the evolution of mountainous or hilly terrain. Berkeley geologists argue that the rate at which water drains from bedrock (blue arrows) determines the thickness of weathered rock. For a larger version of this image please go here.

University of California, Berkeley, geologist William Dietrich pioneered the application of airborne LIDAR - light detection and ranging - to map mountainous terrain, stripping away the vegetation to see the underlying ground surface.

But that didn't take him deep enough. He still couldn't see what was under the surface: the depth of the soil, the underlying weathered rock and the deep bedrock.

He and geology graduate student Daniella Rempe have now proposed a method to determine these underground details without drilling, potentially providing a more precise way to predict water runoff, the moisture available to plants, landslides and how these will respond to climate change.

The technique, which will help improve climate models that today take into account only the soil layer, was published online last week in the Early Edition of the journal Proceedings of the National Academy of Sciences.

A major challenge to including groundwater in climate models, said Rempe, is determining the thickness of weathered bedrock, which can hold most of the water on hillsides, especially during California's dry summers. Their model proposes that the thickness of weathered bedrock under hillslopes is controlled from the bottom up, as opposed to the current view that water from above drives weathering of the bedrock.

"By understanding how water is routed within hillslopes, we can improve predictions of how vegetation and stream flow will respond to climate and land use changes," she said. "But a critical input to hydrologic and climate models is the thickness of soil and weathered bedrock. This model provides, for the first time, a simple theory based on groundwater drainage to predict this thickness across landscapes."

Erosion from the bottom up
The UC Berkeley model emerged from decades of study at various sites where the ground surface is actively eroding, primarily the University of California's Angelo Coast Range Reserve near Laytonville, Calif., and a similar steep, forested area near Coos Bay, Ore. The results apply to mountainous topography across the world, including the Appalachians and Sierra Nevada in the United States.

Soil - a mix of organic material and weathered rock - is traditionally thought of as the key to the landscape, the place where plant roots obtain water and nutrients, the source of runoff into streams, and the material that erodes and occasionally slides.

But in recent years, geologists have come to realize that the often thicker layer of weathered bedrock that lies under the soil - and is in the process of becoming soil - often plays a larger role for plants and the watershed. Roots often penetrate though soil to the weathered rock, and research by Rempe and Dietrich reveals that rock can store water far longer than soil.

"The soil is often a thin veneer on the landscape, but it may not be where the hydrologic action is taking place," Rempe said, noting that the soil at the Angelo site may be less than two feet thick, but the weathered bedrock layer is up to 80 feet thick. "The 100-foot-tall Douglas firs are not getting all of their water from the soil. It is just too thin."

Dietrich and Rempe propose in their model that the thickness of the weathered rock is determined primarily by the rate at which water drains from the solid but water-saturated bedrock beneath. This water can be hundreds of thousands of years old and moves through the rock extremely slowly, sometimes less than a millimeter per year.

As the bedrock is uplifted by tectonic forces, water drains from the top, leaving dry rock subject to fracturing and chemical weathering. Fracturing allows water, gases, and plant roots to penetrate from above and easily transform the rock through weathering processes.

Bedrock doesn't drain, however, unless stream channels cut into the rock and provide a place to drain. To predict the thickness of weathered bedrock, their model needs only the rate at which channels incise and the rate at which the bedrock drains, determined by the porosity and permeability of the rock.

Focus on rock moisture
"This is a first step towards calculating the thickness of weathered bedrock across the landscape, a zone where we have documented 'rock moisture' dynamics, something we think is missing from current climate models," said Dietrich, a professor of earth and planetary science. "This rock moisture can be used by trees and may contribute to sustained base flow in streams as it slowly drains, yet it is virtually unknown."

One prediction of the model that is consistent with observations is that the weathered rock layer thickens towards the ridges that divide hillslopes.

"We are attempting to explain why some landscapes are covered with soil and deep weathered bedrock while others have bare fresh bedrock exposed at the surface," Rempe added. "Our hypothesis is that the primary control is the relative rate of surface erosion versus drainage of underlying fresh bedrock."

Dietrich and Rempe hope to drill at ridge tops to measure the thickness of weathered rock in order to test their model and confirm the key role played by drainage of fresh bedrock in setting the thickness of weathered bedrock across hilly and mountainous landscapes.

.


Related Links
University of California - Berkeley
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARTH OBSERVATION
EO May Increase Survival Of 'Uncontacted' Tribes
Columbia MO (SPX) Apr 27, 2014
Lowland South America, including the Amazon Basin, harbors most of the last indigenous societies that have limited contact with the outside world. Studying these tribes, located deep within Amazonian rainforests, gives scientists a glimpse at what tribal cultures may have been like before the arrival of Europeans. Now, researchers at the University of Missouri have used satellite images to ... read more


EARTH OBSERVATION
Study says pesticides to blame for honeybee colony collapse

Rising CO2 poses significant threat to human nutrition

As CO2 levels rise, some crop nutrients will fall

Bee biodiversity boosts crop yields

EARTH OBSERVATION
Molecular Foundry Opens the Door to Better Doping of Semiconductor Nanocrystals

New lab-on-a-chip device overcomes miniaturization problems

US chip giant Intel to pump $6 bn into Israel: minister

Progress made in developing nanoscale electronics

EARTH OBSERVATION
MH370 puzzle seen leading to out-of-court settlements

Enstrom Helicopters supplying aircraft to Venezuela

New Marine One helicopters to be produced by Sikorsky

Sikorsky officially unveils CH-53K

EARTH OBSERVATION
Toyota posts record annual profit of $17.9 bn

Life-changer or death sentence? Madrid's electric bikes

Google says driving forward on autonomous car

Carmakers promise Chinese drivers a breath of fresh air

EARTH OBSERVATION
Cautious optimism at China bitcoin summit despite uncertain future

US's Lew to urge China to play fair economically

Japan logs record low annual account surplus

China's largest bank ICBC bars services for Bitcoin

EARTH OBSERVATION
Emerald ash borers were in US long before first detection

China demand for luxury furniture 'decimating rosewood'

Super-charged tropical trees of Borneo vitally important for global carbon cycling

Arctic study sheds light on tree-ring divergence problem

EARTH OBSERVATION
Kazakhstan's First Earth Observation Satellite to Orbit

How Does Your Garden Glow? NASA's OCO-2 Seeks Answer

The first globally complete glacier inventory has been created

NASA-CNES Proceed on Surface Water and Ocean Mission

EARTH OBSERVATION
Harnessing Magnetic Vortices for Making Nanoscale Antennas

New method for measuring the temperature of nanoscale objects discovered

Nanomaterial Outsmarts Ions

World's thinnest nanowires created by Vanderbilt grad student




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.