GPS News  
ENERGY TECH
Scientists unravel the mysteries of polymer strands in fuel cells
by Staff Writers
Washington DC (SPX) Oct 25, 2018

file image

Hydrogen fuel cells offer an attractive source of continuous energy for remote applications, from spacecraft to remote weather stations. Fuel cell efficiency decreases as the Nafion membrane, used to separate the anode and cathode within a fuel cell, swells as it interacts with water.

A Russian and Australian collaboration has now shown that this Nafion separator membrane partially unwinds some of its constituent fibers, which then protrude away from the surface into the bulk water phase for hundreds of microns.

The research team was led by a group in Russia together with Australian professor Barry Ninham from Australian National University in Canberra, a leading specialist in colloid and interface science. Their results were published this week in The Journal of Chemical Physics, from AIP Publishing.

The research team began this project to examine a proposed hypothesis that attributed a new state of water to explain swelling of the Nafion membrane. Instead, they are the first to describe the growth of polymer fibers extending from the membrane surface as it interacts with water. The number of fibers increases as a function of deuterium concentration of the water.

"To increase our understanding of these membranes, we needed to describe the molecular-level interaction of deuterated water with the polymer," Bunkin said. "Now that we know the structure of the 'exclusion zone', we can tailor the Nafion structure and its electrical properties by studying changes induced by ion-specific (Hofmeister) effects on its organization and function."

Nafion is the highest-performance commercially available hydrogen-oxide proton exchange membrane used to date in fuel cells. Its porous nature permits significant concentration of the electrolyte solution while separating the anode from the cathode, which allows the flow of electrons producing energy in the fuel cell.

The researchers found the membrane is specifically sensitive to the deuterium content in the ambient water by unweaving the surface's structure. The polymer fibers extend from the membrane into the water. The effect is most pronounced in water with deuterium content between 100 and 1,000 parts per million.

For this study, the team developed a specialized laser instrumentation (photoluminescent UV spectroscopy) to characterize the polymer fibers along the membrane-water interface. Although the individual fibers were not observed directly due to the spatial limitation of the instrumentation, the team reliably detected their outgrowth into the water.

"The significance of this work may provide an entree into some very fundamental areas of biology and energy production about which we did not have a clue," Bunkin said.

Research Report: "Near-surface structure of Nafion in deuterated water"


Related Links
American Institute of Physics
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
3D-printed lithium-ion batteries
Washington DC (SPX) Oct 18, 2018
Electric vehicles and most electronic devices, such as cell phones and laptop computers, are powered by lithium-ion batteries. Until now, manufacturers have had to design their devices around the size and shape of commercially available batteries. But researchers have developed a new method to 3D print lithium-ion batteries in virtually any shape. They report their results in ACS Applied Energy Materials. Most lithium-ion batteries on the market come in cylindrical or rectangular shapes. Therefore ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
A warmer spring leads to less plant growth in summer

Study finds potential benefits of wildlife-livestock coexistence in East Africa

China prices rise as cost of food spikes

Applying auto industry's fuel-efficiency standards to agriculture could net billions

ENERGY TECH
Printed 3D supercapacitor electrode breaks records in lab tests

Inexpensive chip-based device may transform spectrometry

Announcing the discovery of an atomic electronic simulator

First proof of quantum computer advantage

ENERGY TECH
Merging mathematical and physical models toward building a more perfect flying vehicle

Rockwell Collins wins bid for Navy aircraft repair

Northrop contracted for electronics upgrades on Growler, Prowler

AAR, Boeing, StandardAero contracted for P-8A Poseidon support

ENERGY TECH
Carbon fiber can store energy in the body of a vehicle

Uber eyes valuation topping $100 bn in IPO: sources

German prosecutors raid Opel over diesel allegations

New, durable catalyst for key fuel cell reaction may prove useful in eco-friendly vehicles

ENERGY TECH
China not manipulating currency but lacks transparency, US says

China launches full-throated bid to boost confidence in stocks

Asia-Pacific finance ministers fret over US-China spat

US tariffs trigger WTO spat escalation

ENERGY TECH
Forest carbon stocks have been overestimated for 50 years

Tracking the movement of the tropics 800 years into the past

Climate summit host Poland says smart forest management key

Can forests save us from climate change?

ENERGY TECH
African smoke-cloud connection target of NASA airborne flights

Innovative tool allows continental-scale water, energy, and land system modeling

China launches new remote sensing satellites

After two long careers, QuikSCAT rings down the curtain

ENERGY TECH
Big discoveries about tiny particles

Precise control of multimetallic one-nanometer cluster formation achieved

Two quantum dots are better than one: Using one dot to sense changes in another

Nucleation a boon to sustainable nanomanufacturing









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.