Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
Scientists tune X-rays with tiny mirrors
by Staff Writers
Lemont IL (SPX) Jun 17, 2015


Scientists at Argonne have created a new way of manipulating high-intensity X-rays, which will allow researchers to select extremely brief but precise X-ray bursts for their experiments. This schematic of their microelectromechanical device consisting of a small oscillating mirror illustrates the reflection of an incoming X-ray at a particular critical angle. Image courtesy Daniel Lopez/Argonne National Laboratory. For a larger version of this image please go here.

The secret of X-ray science - like so much else - is in the timing. Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have created a new way of manipulating high-intensity X-rays, which will allow researchers to select extremely brief but precise X-ray bursts for their experiments.

The new technology, developed by a team of scientists from Argonne's Center for Nanoscale Materials (CNM) and the Advanced Photon Source (APS), involves a small microelectromechanical system (MEMS) mirror only as wide as a few hairs. MEMS are microscale devices fabricated using silicon wafers in facilities that make integrated circuits. The MEMS device acts as an ultrafast mirror reflecting X-rays at precise times and specific angles.

"Extremely compact devices such as this promise a revolution in our ability to manipulate photons coming from synchrotron light sources, not only providing an on-off switch enabling ultrahigh time-resolution studies, but ultimately promising new ways to steer, filter, and shape X-ray pulses as well," said Stephen Streiffer, Associate Laboratory Director for Photon Sciences and Director of the Advanced Photon Source.

"This is a premier example of the innovation that results from collaboration between nanoscientists and X-ray scientists."

The device that the Argonne researchers developed essentially consists of a tiny diffracting mirror that oscillates at high speeds. As the mirror tilts rapidly back and forth, it creates an optical filter that selects only the X-ray pulses desired for the experiment. Only the light that is diffracted from the mirror goes on to hit the sample, and by adjusting the speed at which the MEMS mirror oscillates, researchers can control the timing of the X-ray pulses.

According to Argonne nanoscientist Daniel Lopez, one of the lead authors on the paper, the device works because of the relationship between the frequency of the mirror's oscillation and the timing of the positioning of the perfect angle for the incoming X-ray.

"If you sit on a Ferris wheel holding a mirror, you will see flashes of light every time the wheel is at the perfect spot for sunlight to hit it. The speed of the Ferris wheel determines the frequency of the flashes you see," he said.

"The Argonne team's work is incredibly exciting because it creates a new class of devices for controlling X-rays," added Paul Evans, a professor of materials science at the University of Wisconsin-Madison. "They have found a way to significantly shrink the optics, which is great because smaller means faster, cheaper to make, and much more versatile."

In the future, the MEMS devices could split an X-ray pulse into even tinier, faster, and more precise slices by oscillating the device many millions of times a second, according to Argonne emeritus scientist Gopal Shenoy. "It will herald a new era of dramatically new and improved kinds of X-ray experiments," he said.

"The advantage of this new device is that it provides a very cheap way to generate and manipulate X-rays, and it can be adapted to virtually any X-ray facility in the world that already exists," Lopez said.

"The successful application of the MEMS technology to manipulate an X-ray beam at very high frequencies will certainly lead to further, more elaborate X-ray optical schemes for studying the structure and dynamics of matter at atomic length and time scales," added Edgar Weckert, the director of photon science at DESY, a German synchrotron research facility.

"This work is a very interesting first step of the MEMS application to X-ray optics. I am looking forward to the progression of the technology and its applications in wider fields at next-generation light sources," said Tetsuya Ishikawa, the director of the RIKEN SPring-8 Center in Japan. These include newly planned light source facilities such as the Advanced Photon Source Upgrade.

"Such small sources and tiny MEMS devices form an ideal combination to make 3-D X-ray ultrafast movies with nanometer resolution," added Jin Wang, a senior scientist at the APS and one of the lead authors.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
DOE/Argonne National Laboratory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Researchers design the most precise quantum thermometer to date
Barcelona, Spain (SPX) Jun 11, 2015
Researchers from the UAB and the University of Nottingham, in an article published in Physical Review Letters, have fixed the limits of thermometry, i.e., they have established the smallest possible fluctuation in temperature which can be measured. The researchers have studied the sensitivity of thermometers created with a handful of atoms, small enough to be capable of showing typical quantum-s ... read more


TIME AND SPACE
Canada requests sanctions against US over meat labelling spat

Wild bees are unpaid farmhands worth billions: study

EU lawmakers back animal cloning ban

France bans sale of Monsanto herbicide Roundup in nurseries

TIME AND SPACE
New boron compounds for organic light-emitting diodes

KAIST team develops the first flexible phase-change random access memory

Exploiting the extraordinary properties of a new semiconductor

Futuristic components on silicon chips, fabricated successfully

TIME AND SPACE
Jacobs Engineering continues work on Australian F-35 bases

France says India to seal deal on Rafale jets in '2 to 3 months'

UTC to rid itself of Sikorsky Aircraft

Airbus hopes to land new A400M orders soon

TIME AND SPACE
California ruling against Uber hits at business model

India's booming taxi-app firms endure bumpy ride

China tech giant Baidu to develop driverless car: media

Tesla boss downplays government subsidy as 'pittance'

TIME AND SPACE
EU, Latin America urge US to lift embargo on Cuba

China to have 'veto power' over infrastructure bank: report

EU business confidence in China at new low: survey

Israel says China demands no workers in settlements

TIME AND SPACE
Changing climate prompts boreal forest shift

Predicting tree mortality

When trees aren't 'green'

Japanese tree plantations causing nitrogen pollution

TIME AND SPACE
New calculations to improve CO2 monitoring from space

NASA 'Eyes' Study Louisiana's Changing Wetlands

Scottish Water using satellites to protect water catchment areas

EOMAP provides shallow water bathymetry for the South China Sea

TIME AND SPACE
Unlocking nanofibers' potential

Scientists observe photographic exposure live at the nanoscale

Measuring the mass of molecules on the nano-scale

Novel X-ray lens sharpens view into the nano world




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.