Subscribe free to our newsletters via your
. GPS News .




FLORA AND FAUNA
Scientists trace nanoparticles from plants to caterpillars
by Staff Writers
Houston TX (SPX) Dec 23, 2014


This is Yeonjong Koo. Image courtesy Jeff Fitlow and Rice University.

In one of the most comprehensive laboratory studies of its kind, Rice University scientists traced the uptake and accumulation of quantum dot nanoparticles from water to plant roots, plant leaves and leaf-eating caterpillars.

The study, one of the first to examine how nanoparticles move through human-relevant food chains, found that nanoparticle accumulation in both plants and animals varied significantly depending upon the type of surface coating applied to the particles. The research is available online in the American Chemical Society's journal Environmental Science and Technology.

"With industrial use of nanoparticles on the rise, there are increasing questions about how they move through the environment and whether they may accumulate in high levels in plants and animals that people eat," said study co-author Janet Braam, professor and chair of the Department of BioSciences at Rice.

Braam and colleagues studied the uptake of fluorescent quantum dots by Arabidopsis thaliana, an oft-studied plant species that is a relative of mustard, broccoli and kale.

In particular, the team looked at how various surface coatings affected how quantum dots moved from roots to leaves as well as how the particles accumulated in leaves. The team also studied how quantum dots behaved when caterpillars called cabbage loopers (Trichoplusia ni) fed upon plant leaves containing quantum dots.

"The impact of nanoparticle uptake on plants themselves and on the herbivores that feed upon them is an open question," said study first author Yeonjong Koo, a postdoctoral research associate in Braam's lab. "Very little work has been done in this area, especially in terrestrial plants, which are the cornerstone of human food webs."

Some toxins, like mercury and DDT, tend to accumulate in higher concentrations as they move up the food chain from plants to animals. It is unknown whether nanoparticles may also be subject to this process, known as biomagnification.

While there are hundreds of types of nanoparticles in use, Koo chose to study quantum dots, submicroscopic bits of semiconductors that glow brightly under ultraviolet light.

The fluorescent particles -- which contained cadmium, selenium, zinc and sulfur -- could easily be measured and imaged in the tests. In addition, the team treated the surface of the quantum dots with three different polymer coatings -- one positively charged, one negatively charged and one neutral.

"In industrial applications, nanoparticles are often coated with a polymer to increase solubility, improve stability, enhance properties and for other reasons," said study co-author Pedro Alvarez, professor and chair of Rice's Department of Civil and Environmental Engineering. "We expect surface coatings to play a significant role in whether and how nanomaterials may accumulate in food webs."

Previous lab studies had suggested that the neutral coatings might cause the nanoparticles to aggregate and form clumps that were so large that they would not readily move from a plant's roots to its leaves. The experiments bore this out.

Of the three particle types, only those with charged coatings moved readily through the plants, and only the negatively charged particles avoided clumping altogether. The study also found that the type of coating impacted the plants' ability to biodegrade, or break down, the quantum dots.

Koo and colleagues found caterpillars that fed on plants containing quantum dots gained less weight and grew more slowly than caterpillars that fed on untainted leaves. By examining the caterpillar's excrement, the scientists were also able to estimate whether cadmium, selenium and intact quantum dots might be accumulating in the animals. Again, the coating played an important role.

"Our tests were not specifically designed to measure bioaccumulation in caterpillars, but the data we collected suggest that particles with positively charged coatings may accumulate in cells and pose a risk of bioaccumulation," Koo said. "Based on our findings, more tests should be conducted to determine the extent of this risk under a broader set of ecological conditions."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rice University
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Biologist Reveals How Whales May 'Sing' for Their Supper
Syracuse NY (SPX) Dec 23, 2014
Humpback whales have a trick or two when it comes to finding a quick snack at the bottom of the ocean. But how they pinpoint that meal at night, with little or no available light, remains a mystery. Susan Parks, assistant professor of biology in the College of Arts and Sciences, in collaboration with a consortium of other researchers, has been studying these unique feeding behaviors. Her r ... read more


FLORA AND FAUNA
Can returning crops to their wild states help feed the world?

Little Uruguay has big plans for smart agriculture

From Vietnam with love: local caviar aims to make a splash

Rise of Brazil's ranching queen sparks green protests

FLORA AND FAUNA
Switching to spintronics

Germanium comes home to Purdue for semiconductor milestone

Room temp quantum optics chip geneates tunable photon-pair spectrum

Unusual electronic state found in new class of unconventional superconductors

FLORA AND FAUNA
Airbus will not scrap A380s despite order drought: CEO

Air China orders 60 Boeing 737s for more than $6 bn

BOC Aviation adds two more Boeing jets to earlier order spree

3 countries eye pooled acquisition, operation of airlifters

FLORA AND FAUNA
Honda to recall almost 570,000 vehicles in China

Rice study fuels hope for natural gas cars

Google self-driving car prototype ready to try road

Dongfeng, Huawei partner for Internet-enabled cars

FLORA AND FAUNA
China says regrets death in Myanmar mine protest

US officials see progress in China trade talks

WTO appeals panel sides with China in US anti-dumping duties row

Woman shot dead protesting China-backed mine in Myanmar: govt

FLORA AND FAUNA
Ecuador returning German money in environment row

Clearing rainforests distorts wind and water, packs climate wallop beyond carbon

Seeing the forest for the trees

NASA Study Shows 13-year Record of Drying Amazon Caused Vegetation Declines

FLORA AND FAUNA
NASA's Spaceborne Carbon Counter Maps New Details

Salinity matters

CryoSat extends its reach on the Arctic

China publishes images captured by CBERS-4 satellite

FLORA AND FAUNA
ORNL microscopy pencils patterns in polymers at the nanoscale

Nanoscale resistors for quantum devices

New technique allows low-cost creation of 3-D nanostructures

Technique determines nanomaterials' chemical makeup and topography




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.