Subscribe free to our newsletters via your
. GPS News .




EARLY EARTH
Scientists reassemble the backbone of life with a particle accelerator
by Staff Writers
Grenoble, France (SPX) Jan 17, 2013


This is an artist's impression of an Ichthyostega tetrapod, with the cut-out showing the 3-D reconstruction of two vetrebrae from the study. Credit: Julia Molnar.

Scientists have been able to reconstruct, for the first time, the intricate three-dimensional structure of the backbone of early tetrapods, the earliest four-legged animals. High-energy X-rays and a new data extraction protocol allowed the researchers to reconstruct the backbones of the 360 million year old fossils in exceptional detail and shed new light on how the first vertebrates moved from water onto land. The results are published 13 January 2013 in Nature.

The international team of scientists was led by Stephanie E. Pierce from The Royal Veterinary College in London and Jennifer A. Clack from the University of Cambridge. It also comprised scientists from Uppsala University (Sweden) and the European Synchrotron Radiation Facility ESRF in Grenoble (France).

The tetrapods are four-limbed vertebrates, which are today represented by amphibians, reptiles, birds and mammals. Around 400 million years ago, early tetrapods were the first vertebrates to make short excursions into shallower waters where they used their four limbs for moving around. How this happened and how they then transferred to land is a subject of intense debate among palaeontologists and evolution biologists.

All tetrapods have a backbone, or vertebral column, which is a bony structure common to all other vertebrates including fish, from which tetrapods evolved. A backbone is formed from vertebrae connected in a row - from head to tail. Unlike the backbone of living tetrapods (e.g. humans), in which each vertebra is composed of only one bone, early tetrapods had vertebrae made up of multiple parts.

"For more than 100 years, early tetrapods were thought to have vertebrae composed of three sets of bones - one bone in front, one on top, and a pair behind. But, by peering inside the fossils using synchrotron X-rays we have discovered that this traditional view literally got it back-to-front," says Stephanie Pierce who is the lead author of the publication.

For the analysis, the European Synchrotron Radiation Facility (ESRF) in France, where the three fossil fragments were scanned with X-rays, applied a data extraction method to reveal tiny details of fossil bones buried deep inside the rock matrix.

The fossilised bones are embedded in rock so dense it absorbs most of the X-rays. "Without the new method, it would not have been possible to reveal the elements of the spine in three dimensions with a resolution of 30 micrometres" says Sophie Sanchez from University of Uppsala and ESRF who is a co-author of the publication.

In these high-resolution X-ray images, the scientists discovered that what was thought to be the first bone - known as the intercentrum - is actually the last in the series. And, although this might seem like a trivial oversight, this re-arrangement in vertebral structure has over-arching ramifications for the functional evolution of the tetrapod backbone.

Stephanie Pierce explains: "By understanding how each of the bones fit together we can begin to explore the mobility of the spine and test how it may have transferred forces between the limbs during the early stages of land movement".

But, the findings didn't end there. One of the animals - known as Ichthyostega - was also found to have an assortment of hitherto unknown skeletal features including a string of bones extending down the middle of its chest.

Jennifer Clack says: "These chest bones turned out to be the earliest evolutionary attempt to produce a bony sternum. Such a structure would have strengthened the ribcage of Ichthyostega, permitting it to support its body weight on its chest while moving about on land."

This unexpected discovery supports recent work by Pierce and Clack that showed Ichthyostega probably moved by dragging itself across flat ground using synchronous 'crutching' motions of its front legs - much like that of a mudskipper or seal. Dr Pierce adds: "The results of this study force us to re-write the textbook on backbone evolution in the earliest limbed animals."

"At the ESRF, the new data extraction protocol makes it possible to study fossils in dense and heavy rock in unprecedented detail. What we have seen today is only the beginning of more surprises to come," concludes Sophie Sanchez.

Stephanie E Pierce, Per E Ahlberg, John R Hutchinson, Julia L Molna, Sophie Sanchez, Paul Tafforeau, and Jennifer A Clack: Vertebral architecture in the earliest stem tetrapods, Nature advanced online publication 13 January 2013, DOI: 10.1038/nature11825.

.


Related Links
European Synchrotron Radiation Facility
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Oxygen to the core
Livermore, CA (SPX) Jan 15, 2013
An international collaboration including researchers from Lawrence Livermore National Laboratory has discovered that the Earth's core formed under more oxidizing conditions than previously proposed. Through a series of laser-heated diamond anvil cell experiments at high pressure (350,000 to 700,000 atmospheres of pressure) and temperatures (5,120 to 7,460 degrees Fahrenheit), the team demo ... read more


EARLY EARTH
Dietary shifts driving up phosphorus use

Amino Acid Studies May Aid Battle Against Citrus Greening Disease

Potential harvest of most fish stocks largely unrelated to abundance

China crash sees cats escape cooking pot

EARLY EARTH
Intel profits slide, outlook weak as woes continue

New biochip technology uses tiny whirlpools to corral microbes

Power spintronics: Producing AC voltages by manipulating magnetic fields

Researchers demonstrate record-setting p-type transistor

EARLY EARTH
Brazil signs deal to manufacture 'copters

Sound may protect airliners from birds

Rudra attack version for Aero India 2013

BAE extends pilot training deal in Papua

EARLY EARTH
Does everyone think someone else should drive a green car?

Lexus to launch hybrid sedan in Japan, Europe

Jeep to build cars in China with GAC

Nissan cuts price of electric Leaf

EARLY EARTH
US software engineer outsources his job to China

Apple, Google chiefs face grilling on 'no-poaching'

China Mining Corporation to list in Hong Kong this month

Chilean mining investment to top $100B

EARLY EARTH
Study Finds Severe Climate Jeopardizing Amazon Forest

Savanna study highlights African fuelwood crisis

Tree and human health may be linked

Bengali forests are fading away

EARLY EARTH
NASA's Interface Region Imaging Spectrograph Mission Satellite Completed

Landsat Senses a Disturbance in the Forest

Testing time for Proba-V, ESA's global vegetation tracker

MDA awarded contract to build three radar satellites

EARLY EARTH
New Research Gives Insight into Graphene Grain Boundaries

Chemistry resolves toxic concerns about carbon nanotubes

Engineer making rechargeable batteries with layered nanomaterials

New nanotech fiber: Robust handling, shocking performance




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement