Subscribe free to our newsletters via your
. GPS News .




NANO TECH
Scientists reach the ultimate goal - controlling chirality in carbon nanotubes
by Staff Writers
Helsinki, Finland (SPX) May 03, 2013


This image shows the initial carbon cap formation on Co nanoparticles. Credit: Esko Kauppinen.

An ultimate goal in the field of carbon nanotube research is to synthesise single-walled carbon nanotubes (SWNTs) with controlled chiralities. Twenty years after the discovery of SWNTs, scientists from Aalto University in Finland, A.M. Prokhorov General Physics Institute RAS in Russia and the Center for Electron Nanoscopy of Technical University of Denmark (DTU) have managed to control chirality in carbon nanotubes during their chemical vapor deposition synthesis.

Carbon nanotube structure is defined by a pair of integers known as chiral indices (n,m), in other words, chirality.

Chirality defines the optical and electronic properties of carbon nanotubes, so controlling it is a key to exploiting their practical applications, says Professor Esko I. Kauppinen, the leader of the Nanomaterials Group in Aalto University School of Science.

Over the years, substantial progress has been made to develop various structure-controlled synthesis methods. However, precise control over the chiral structure of SWNTs has been largely hindered by a lack of practical means to direct the formation of the metal nanoparticle catalysts and their catalytic dynamics during tube growth.

We achieved an epitaxial formation of Co nanoparticles by reducing a well-developed solid solution in CO, reveals Maoshuai He, a postdoctoral researcher at Aalto University School of Chemical Technology.

For the first time, the new catalyst was employed for selective growth of SWNTs, adds senior staff scientist Hua Jiang from Aalto University School of Science.

By introducing the new catalysts into a conventional CVD reactor, the research team demonstrated preferential growth of semiconducting SWNTs (~90%) with an exceptionally high population of (6,5) tubes (53%) at 500C. Furthermore, they also showed a shift of the chiral preference from (6,5) tubes at 500C to (7, 6) and (9, 4) nanotubes at 400C.

These findings open new perspectives both for structural control of SWNTs and for elucidating their growth mechanisms, thus are important for the fundamental understanding of science behind nanotube growth, comments Professor Juha Lehtonen from Aalto University.

The research has been recently published in a new Nature Publishing Group journal Scientific Reports, 3 (2013), 1460. Link to article

.


Related Links
Aalto University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Dark field imaging of rattle-type silica nanorattles coated gold nanoparticles in vitro and in vivo
Beijing, China (SPX) May 03, 2013
In recent years, metal nanoparticles have showed great application prospect in the field of biological imaging, cancer diagnosis and treatment due to its unique optical scattering and optical absorption properties. In many metal materials, gold nanoparticles have caused concerns in the field because of its simple preparation, easy to modify advantages. However, the poor stability in physio ... read more


NANO TECH
Substances in honey increase detoxification gene expression

Traditional ranching practices enhance African savanna

New plant protein discoveries could ease global food and fuel demands

More food and greener farming with specialised transporters for plants

NANO TECH
New Method Joins Gallium Nitride and Diamond for Better Thermal Management

Intel names insider Krzanich as new CEO

High performance semiconductor spray paint could be a game changer for organic electronics

New Research Findings Open Door to Zinc-Oxide-based UV Lasers, LED Devices

NANO TECH
Australia unveils its F-35 JSF 'Iron Bird'

China welcomes French president with Airbus deal

Multifunction Advanced Data Link Flight Tested For F-35 Program

Brazil drops plan to build AgustaWestland helicopter

NANO TECH
Rear seat design - a priority for children's safety in cars

GM pulls 'offensive' China ad: report

GM joins call for US action on climate change

Honda's annual net profit soars to $3.7 bn

NANO TECH
U.K. under pressure to clean up tax havens

France wants to boost Japan relations, maintain China ties

China must obey ruling on US steel imports: WTO

Mercosur seeks more Pacific partners for commodities, goods

NANO TECH
Mekong forest facing sharp decline: WWF

Deforestation threatens Mekong region

Smoke signals: How burning plants tell seeds to rise from the ashes

In the Northeast, forests with entirely native flora are not the norm

NANO TECH
World's major development banks look closer at Earth observation

China Successfully Sends First Gaofen Satellite Into Space

China launches high-definition earth observation satellite

Japan's Mt Fuji to get World Heritage stamp: officials

NANO TECH
Dark field imaging of rattle-type silica nanorattles coated gold nanoparticles in vitro and in vivo

'Super-resolution' microscope possible for nanostructures

Scientists reach the ultimate goal - controlling chirality in carbon nanotubes

Nanowires grown on graphene have surprising structure




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement