GPS News  
TECH SPACE
Scientists create 'rewritable magnetic charge ice'
by Staff Writers
DeKalb IL (SPX) May 20, 2016


A depiction of the global order of magnetic charge ice. Orange-red areas represent the positive charges; blue areas represent negative charges. Image courtesy Yong-Lei Wang and Zhili Xiao. For a larger version of this image please go here.

A team of scientists working at the U.S. Department of Energy's (DOE) Argonne National Laboratory and led by Northern Illinois University physicist and Argonne materials scientist Zhili Xiao has created a new material, called "rewritable magnetic charge ice," that permits an unprecedented degree of control over local magnetic fields and could pave the way for new computing technologies.

The scientists' research report on development of magnetic charge ice is published in the May 20, 2016 issue of the journal Science. With potential applications involving data storage, memory and logic devices, magnetic charge ice could someday lead to smaller and more powerful computers or even play a role in quantum computing, Xiao said.

Current magnetic storage and recording devices, such as computer hard disks, contain nanomagnets with two polarities, each of which is used to represent either 0 or 1 - the binary digits, or bits, used in computers. A magnetic charge ice system could have eight possible configurations instead of two, resulting in denser storage capabilities or added functionality unavailable in current technologies.

"Our work is the first success achieving an artificial ice of magnetic charges with controllable energy states," said Xiao, who holds a joint appointment between Argonne and NIU. "Our realization of tunable artificial magnetic charge ices is similar to the synthesis of a dreamed material. It provides versatile platforms to advance our knowledge about artificial spin ices, to discover new physics phenomena and to achieve desired functionalities for applications."

Over the past decade, scientists have been highly interested in creating, investigating and attempting to manipulate the unusual properties of "artificial spin ices," so-called because the spins have a lattice structure that follows the proton positioning ordering found in water ice.

Scientists consider artificial spin ices to be scientific playgrounds, where the mysteries of magnetism might be explored and revealed. However, in the past, researchers have been frustrated in their attempts to achieve global and local control of spin-ice magnetic charges.

To overcome this challenge, Xiao and his colleagues decoupled the lattice structure of magnetic spins and the magnetic charges. The scientists used a bi-axis vector magnet to precisely and conveniently tune the magnetic charge ice to any of eight possible charge configurations. They then used a magnetic force microscope to demonstrate the material's local write-read-erase multi-functionality at room temperature.

For example, using a specially developed patterning technique, they wrote the word, "ICE," on the material in a physical space 10 times smaller than the diameter of a human hair.

Magnetic charge ice is two-dimensional, meaning it consists of a very thin layer of atoms, and could be applied to other thin materials, such as graphene. Xiao said the material also is environmentally friendly and relatively inexpensive to produce.

Yong-Lei Wang, a former postdoctoral research associate of Xiao's, is first author and co-corresponding author on the Science article. He designed the new artificial magnetic ice structure and built custom instrumentation for the research.

"Although spin and magnetic charges are always correlated, they can be ordered in different ways," said Wang, who now holds a joint appointment with Argonne and Notre Dame. "This work provides a new way of thinking in solving problems. Instead of focusing on spins, we tackled the magnetic charges that allow more controllability."

There are hurdles yet to overcome before magnetic charge ice could be used in technological devices, Xiao added. For example, a bi-axis vector magnet is required to realize all energy state configurations and arrangements, and it would be challenging to incorporate such a magnet into commercial silicon technology.

But in addition to uses in traditional computing, Xiao said quantum computing could benefit from magnetic monopoles in the charge ice. Other potential applications of magnetic charge ice might include enhancement of the current-carrying capability of superconductors.

In addition to Xiao and Wang, members of the research team include Xiao's Ph.D. student Jing Xu; scientists Alexey Snezhko, John E. Pearson, George W. Crabtree and Wai-Kwong Kwok in Argonne's Materials Science Division; and scientists Leonidas E. Ocola and Ralu Divan in Argonne's Center for Nanoscale Materials.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Northern Illinois University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Dartmouth announces new way to explore mathematical universe
Hanover NH (SPX) May 12, 2016
An international group of mathematicians at Dartmouth College and other institutions have released a new online resource that provides detailed maps of previously uncharted mathematical terrain. The "L-functions and Modular Forms Database," or LMFDB, is an intricate catalog of mathematical objects that maps out the connections between them. Both beautiful and functional like an atlas, the ... read more


TECH SPACE
Illinois River water quality improvement linked to more efficient corn production

UN panel says weedkiller 'unlikely' to cause cancer

Researchers help dairy farmers cool cows more efficiently, use less water

Nation's beekeepers lost 44 percent of bees in 2015-16

TECH SPACE
Ferrous chemistry in aqueous solution unravelled

Cobham announces new GaN-based solid state technology

Primitive quantum computer finds application

First single-enzyme method to produce quantum dots revealed

TECH SPACE
Saab to unveil first Gripen E aircraft this week

Paramount announces armed ISR aircraft

New TH-119 helicopter unveiled for military pilot training

U.S. Navy contracts Boeing for P-8A aircraft component repair

TECH SPACE
Waze squeezes into Uber's lane with carpool feature

Tesla raising cash to fund accelerated production

Innovative traffic interchanges help drivers avoid crashes, save lives

General Motors' Opel unit in hot seat over emissions

TECH SPACE
European vote against China market status not 'constructive': Beijing

Australia, US boost efforts to protect steelmakers

China and Caribbean cosy up to the sound of music

China April exports, imports fall in sign of weakness

TECH SPACE
US must step-up forest pest prevention

Californian sudden oak death epidemic 'unstoppable'

Amazon rainforest responds quickly to extreme climate events

Old-growth forests may provide buffer against rising temperatures

TECH SPACE
Earth's magnetic heartbeat

Spotlight on our living planet

Now 40, NASA's LAGEOS Set the Bar for Studies of Earth

Underground fungi detected from space

TECH SPACE
Little ANTs: Researchers build the world's tiniest engine

New movies from the microcosmos

Ultra-long, one-dimensional carbon chains are synthesised for the first time

Rice introduces Teslaphoresis to help assemble Nanotubes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.