Subscribe free to our newsletters via your
. GPS News .




TECH SPACE
Scientists create cheaper magnetic material for cars, wind turbines
by Staff Writers
Ames IA (SPX) May 03, 2015


Cerium is a widely available and inexpensive rare-earth metal. US Department of Energy Ames Laboratory scientists have used it to create a high-performance magnet that's similar in performance to traditional dysprosium-containing magnets and could make wind turbines less expensive to manufacture. Image courtesy U.S. Dept. of Energy's Ames Laboratory. For a larger version of this image please go here.

Karl A. Gschneidner and fellow scientists at the U.S. Department of Energy's Ames Laboratory have created a new magnetic alloy that is an alternative to traditional rare-earth permanent magnets.

The new alloy - a potential replacement for high-performance permanent magnets found in automobile engines and wind turbines - eliminates the use of one of the scarcest and costliest rare earth elements, dysprosium, and instead uses cerium, the most abundant rare earth.

The result, an alloy of neodymium, iron and boron co-doped with cerium and cobalt, is a less expensive material with properties that are competitive with traditional sintered magnets containing dysprosium.

Experiments performed at Ames Laboratory by post-doctoral researcher Arjun Pathak, and Mahmud Khan (now at Miami University) demonstrated that the cerium-containing alloy's intrinsic coercivity - the ability of a magnetic material to resist demagnetization - far exceeds that of dysprosium-containing magnets at high temperatures. The materials are at least 20 to 40 percent cheaper than the dysprosium-containing magnets.

"This is quite exciting result; we found that this material works better than anything out there at temperatures above 150 C," said Gschneidner. "It's an important consideration for high-temperature applications."

Previous attempts to use cerium in rare-earth magnets failed because it reduces the Curie temperature - the temperature above which an alloy loses its permanent magnet properties. But the research team discovered that co-doping with cobalt allowed them to substitute cerium for dysprosium without losing desired magnetic properties.

Finding a comparable substitute material is key to reducing manufacturing reliance on dysprosium; the current demand for it far outpaces mining and recycling sources for it.

The paper, "Cerium: An Unlikely Replacement of Dysprosium in High Performance Nd-Fe-B Permanent Magnets" was published in Advanced Materials, and co-authored by Arjun K. Pathak, Mahmud Khan, Karl. A. Gschneidner, Ralph W. McCallum, Lin Zhou, Kewei Sun, Kevin W. Dennis, Matthew J. Kramer and Vitalij Pecharsky of the Ames Laboratory; Chen Zhou of MEDA Engineering and Technical Services LLC; and Frederik E. Pinkerton of General Motors R and D Center.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ames Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
New model for the thermo-elasto-plasticity deformation of crystals
Beijing, China (SPX) May 01, 2015
Researchers have proposed a new thermo-elasto-plasticity constitutive model based on the interatomic potential and solid mechanics for metal crystals. Through this new model, the material behavior at different temperatures could be described accurately and conveniently. The work, led by Professor Wang TzuChiang, together with collaborators Chen cen and Tang Qiheng at the State Key Laborato ... read more


TECH SPACE
Fungi enhances crop roots and could be a future 'bio-fertilizer'

Startup turns old shipping containers into farms

Simulating seasons

Norway plans to slash subsidies to fur farms

TECH SPACE
Two-dimensional semiconductor comes clean

Defects in atomically thin semiconductor emit single photons

Researchers develop acoustically driven controls for smartphones

Printing silicon on paper, with lasers

TECH SPACE
Airbus DS, Cisco partner in key business areas

Singapore requests upgrade of its F-16s

Kuwait to order Boeing F/A-18 fighters worth $3 bn

Northrop announces new radar development for B-1 bombers

TECH SPACE
More than 200,000 road deaths a year in China: WHO

Tesla ramps up output in first quarter but losses rise

China auto giant FAW gets new chief amid graft scandal

Japan's Toyota, Mazda eye green alliance: report

TECH SPACE
Chinese turn Paris suburb into Europe's biggest fashion market

Trade with Cuba on Russian radar

China April exports down 6.4% in new sign of weakness

Germany's Siemens acknowledges China examination

TECH SPACE
Citizen science helps predict spread of sudden oak death

Forests could be the trump card in efforts to end global hunger

Forest canopies buffer against climate change

Partially logged rainforests emitting more carbon than previously thought

TECH SPACE
Volcano Loki observed from Earth

Pollution Monitoring Instrument Passes Critical NASA Review

Latin America EO Data Market To Exceed $350 Million By 2024

NASA Aids Response to Nepal Quake

TECH SPACE
Chemists strike nano-gold with 4 new atomic structures

New technique for exploring structural dynamics of nanoworld

Nanotubes with 2 walls have singular qualities

Happily ever after: Scientists arrange protein-nanoparticle marriage




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.