Subscribe free to our newsletters via your
. GPS News .




ENERGY TECH
Scientists craft atomically seamless semiconductor junctions
by Staff Writers
Seattle WA (SPX) Aug 28, 2014


This photoluminescence intensity map shows a typical piece of the lateral heterostructures. The junction region produces an enhanced light emission, indicating its application potential in optoelectronics. Image courtesy Uni of Washington.

Scientists have developed what they believe is the thinnest-possible semiconductor, a new class of nanoscale materials made in sheets only three atoms thick.

The University of Washington researchers have demonstrated that two of these single-layer semiconductor materials can be connected in an atomically seamless fashion known as a heterojunction. This result could be the basis for next-generation flexible and transparent computing, better light-emitting diodes, or LEDs, and solar technologies.

"Heterojunctions are fundamental elements of electronic and photonic devices," said senior author Xiaodong Xu, a UW assistant professor of materials science and engineering and of physics.

"Our experimental demonstration of such junctions between two-dimensional materials should enable new kinds of transistors, LEDs, nanolasers, and solar cells to be developed for highly integrated electronic and optical circuits within a single atomic plane."

The research was published online this week in Nature Materials.

The researchers discovered that two flat semiconductor materials can be connected edge-to-edge with crystalline perfection. They worked with two single-layer, or monolayer, materials - molybdenum diselenide and tungsten diselenide - that have very similar structures, which was key to creating the composite two-dimensional semiconductor.

Collaborators from the electron microscopy center at the University of Warwick in England found that all the atoms in both materials formed a single honeycomb lattice structure, without any distortions or discontinuities. This provides the strongest possible link between two single-layer materials, necessary for flexible devices. Within the same family of materials it is feasible that researchers could bond other pairs together in the same way.

The researchers created the junctions in a small furnace at the UW. First, they inserted a powder mixture of the two materials into a chamber heated to 900 degrees Celsius (1,652 F). Hydrogen gas was then passed through the chamber and the evaporated atoms from one of the materials were carried toward a cooler region of the tube and deposited as single-layer crystals in the shape of triangles.

After a while, evaporated atoms from the second material then attached to the edges of the triangle to create a seamless semiconducting heterojunction.

"This is a scalable technique," said Sanfeng Wu, a UW doctoral student in physics and one of the lead authors. "Because the materials have different properties, they evaporate and separate at different times automatically. The second material forms around the first triangle that just previously formed. That's why these lattices are so beautifully connected."

With a larger furnace, it would be possible to mass-produce sheets of these semiconductor heterostructures, the researchers said. On a small scale, it takes about five minutes to grow the crystals, with up to two hours of heating and cooling time.

"We are very excited about the new science and engineering opportunities provided by these novel structures," said senior author David Cobden, a UW professor of physics.

"In the future, combinations of two-dimensional materials may be integrated together in this way to form all kinds of interesting electronic structures such as in-plane quantum wells and quantum wires, superlattices, fully functioning transistors, and even complete electronic circuits."

The researchers have already demonstrated that the junction interacts with light much more strongly than the rest of the monolayer, which is encouraging for optoelectric and photonic applications like solar cells.

Other co-authors are Chunming Huang and Pasqual Rivera of UW physics; Ana Sanchez, Richard Beanland and Jonathan Peters at the University of Warwick; Jason Ross of UW materials science and engineering; and Wang Yao, a theoretical physicist of the University of Hong Kong.

This research was funded by the U.S. Department of Energy, the UW's Clean Energy Institute, the Research Grant Council of Hong Kong, the University Grants Committee of Hong Kong, the Croucher Foundation, the Science City Research Alliance and the Higher Education Funding Council for England's Strategic Development Fund.

.


Related Links
University of Washington
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Scientists uncover clues to role of magnetism in iron-based superconductors
Oak Ridge TN (SPX) Aug 28, 2014
New measurements of atomic-scale magnetic behavior in iron-based superconductors by researchers at the Department of Energy's Oak Ridge National Laboratory and Vanderbilt University are challenging conventional wisdom about superconductivity and magnetism. The study published in Advanced Materials provides experimental evidence that local magnetic fluctuations can influence the performance o ... read more


ENERGY TECH
Water 'thermostat' could help engineer drought-resistant crops

New study charts the global invasion of crop pests

How to prevent organic food fraud

Locust plague descends on Madagascar capital

ENERGY TECH
Nanoplasmonic and optical resonators create laser-like light emission

Ferroelectric Materials Suffer Unexpected Electric Polarizations

Electrical engineers take major step toward photonic circuits

'Cavity protection effect' helps to conserve quantum information

ENERGY TECH
China Southern swings to net loss in first half

MH370 may have turned south 'earlier' than thought

First of 3 upgraded aerial tankers returned to France

F-35 hanger construction work contracted by Navy

ENERGY TECH
Booming electric car sales under fire in Norway

Sweden court accepts receivership for Saab carmaker

France's Peugeot gets approval for China plant: report

China fines Japanese auto parts firms $200 mn for monopoly

ENERGY TECH
Alibaba earnings leap on cusp of stock market debut

Samsung denies child labour at Chinese supplier

Malaysia refuses New Zealand activist entry

China's Microsoft probe extends to browser, media player

ENERGY TECH
Brazil cracks 'biggest' Amazon deforestation gang

Brazil arrests 8 in Amazon deforestation swoop

World's primary forests on the brink

New analysis links tree height to climate

ENERGY TECH
NASA Radar System Surveys Napa Valley Quake Area

NASA Begins Hurricane Mission with Global Hawk Flight to Cristobal

How might El Nino affect wildfires in California?

Unique Database of Satellite Images of Russia Exceeds 3.5 Mln Items

ENERGY TECH
Shaping the Future of Nanocrystals

Introducing the multi-tasking nanoparticle

Electron microscopy enables imaging of gold nanoparticles

Calculations with Nanoscale Smart Particles




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.