Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
Scientists capture first direct proof of Hofstadter butterfly effect
by Staff Writers
Orlando FL (SPX) May 20, 2013


UCF team Masa Ishigami and Jyoti Katoch work to capture the illusive Hofstadter's butterfly effect. Credit: UCF.

A team of researchers from several universities - including UCF -has observed a rare quantum physics effect that produces a repeating butterfly-shaped energy spectrum in a magnetic field, confirming the longstanding prediction of the quantum fractal energy structure called Hofstadter's butterfly.

This discovery by the team paves the way for engineering new types of extraordinary nanoscale materials that can be used to develop smaller, lighter and faster electronics, including sensors, cell phones, tablets and laptops.

First predicted by American physicist Douglas Hofstadter in 1976, the butterfly pattern emerges when electrons are confined to a two-dimensional plane and subjected to both a periodic potential energy and a strong magnetic field.

The Hofstadter butterfly is a fractal pattern-meaning that it contains shapes that repeat on smaller and smaller size scales. Fractals are common in systems such as fluid mechanics, but rare in the quantum mechanical world. The Hofstadter butterfly is one of the first quantum fractals theoretically discovered in physics but, until now, there has been no direct experimental proof of this spectrum.

Columbia University led the study and also involved scientists from the City University of New York, Tohoku University and the National Institute for Materials Science in Japan. Columbia prepared the sample and the UCF team measured the regular recurrence of the high-fidelity periodic pattern, engineered by inducing nanoscale ripples on graphene, a carbon material.

The measured recurrence served as the essential proof that the measured spectrum was indeed the Hofstadter butterfly. The image that captured the evidence was taken in UCF Assistant Professor Masa Ishigami's laboratory.

Jyoti Katoch, Ishigami's graduate student, used a non-contact atomic force high-resolution microscope to image the ripples, which have the height of only 0.2 angstroms (twenty trillionth of a meter), to confirm that the observed Hofstadter butterfly spectrum indeed matched the theoretical prediction.

"The arrangement of individual atoms, even just one atom can drastically alter properties of nanoscale materials. That is the basis for nanotechnology," Ishigami said.

"Atomic structures must be resolved to understand the properties of nanoscale materials. What we do here at UCF is to explain why nanoscale materials behave so different by resolving their atomic structures.

"Only when we understand the origin of the extraordinary properties of nanoscale materials, we can propel nanoscience and technology forward. What Jyoti has done here is to image how graphene is rippled to explain the observed Hofstadter spectrum."

UCF's laboratory utilizes a novel, the state-of-the-art microscopy technique to simultaneously determine the atomic structure and electronic properties of nanoscale materials such as graphene.

Katoch has been working with Ishigami since 2008, when Ishigami joined UCF. Katoch helped build the laboratory and developed the atomic-resolution capability critical to capturing the picture proof for this study.

Ishigami has a Ph.D. in physics from the University of California at Berkeley and a bachelor's degree in physics from the Massachusetts Institute of Technology. He has won multiple awards, including the Intelligence Community postdoctoral fellowship and the Hertz graduate fellowship, and has published more than 30 papers in journals including Science.

The study is published in Nature.

.


Related Links
University of Central Florida
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
New principle may help explain why nature is quantum
Singapore (SPX) May 15, 2013
Like small children, scientists are always asking the question 'why?'. One question they've yet to answer is why nature picked quantum physics, in all its weird glory, as a sensible way to behave. Researchers Corsin Pfister and Stephanie Wehner at the Centre for Quantum Technologies at the National University of Singapore tackle this perennial question in a paper published 14 May in Nature Commu ... read more


TIME AND SPACE
Invasive Asian stink bugs threaten fruit crops in Michigan

Measure on Amazon sugar cultivation gains in Brazil Congress

Flower power fights orchard pests

Banks accused of funding Asian land grabbing

TIME AND SPACE
Bright Future For Photonic Quantum Computers

New magnetic graphene may revolutionize electronics

Flawed Diamonds Promise Sensory Perfection

Scientists develop device for portable, ultra-precise clocks and quantum sensors

TIME AND SPACE
Saab upgrading bid for Brazil FX-2 contest

China 'will not accept' carbon tax on EU flights: report

F-35A Completes High Angle Of Attack Testing

India commissions first MiG-29K fighters

TIME AND SPACE
China's Tri-Ring buys Polish bearings maker FLT Krasnik

Hong Kong launches first electric taxis

China owner smashes up his Maserati in service protest

Germany's Volkswagen plans new China car plant

TIME AND SPACE
EU, China have much to lose if trade war breaks out: analysts

Greek PM in China touts country as European 'gateway'

Apple, US lawmakers in offshore tax showdown

Environmentalist outrage as Rio Tinto gets mine go-ahead

TIME AND SPACE
Indonesia court ruling boosts indigenous land rights

Indonesia extends logging ban to protect rainforest

Indonesia extends logging ban to protect rainforest

Loss of Eastern Hemlock Will Affect Forest Water Use

TIME AND SPACE
Team Wins Cubesat Berth to Gather Earth Energy Imbalance Measurements

NRL's MIGHTI Slated for Launch on ICON Mission

New Public Application of Landsat Images Released

1000mph land speed attempt relies on DMCii eye in the sky

TIME AND SPACE
The science behind a self-assembled nano-carbon helix

UC Riverside scientists discovering new uses for tiny carbon nanotubes

First precise MEMS output measurement technique unveiled

Going negative pays for nanotubes




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement