GPS News  
TECH SPACE
Scaling up tissue engineering
by Staff Writers
Boston MA (SPX) Mar 08, 2016


Confocal microscopy image showing a cross-section of a 3D-printed, 1-centimeter-thick vascularized tissue construct showing stem cell differentiation towards development of bone cells, following one month of active perfusion of fluids, nutrients, and cell growth factors. The structure was fabricated using a novel 3D bioprinting strategy invented by Jennifer Lewis and her team at the Wyss Institute and Harvard SEAS. Image courtesy Lewis Lab, Wyss Institute at Harvard University.

A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A. Paulson School for Engineering and Applied Sciences (SEAS) has invented a method for 3D bioprinting thick vascularized tissue constructs composed of human stem cells, extracellular matrix, and circulatory channels lined with endothelial blood vessel cells.

The resulting network of vasculature contained within these deep tissues enables fluids, nutrients and cell growth factors to be controllably perfused uniformly throughout the tissue. The advance is reported March 7 in the journal Proceedings of the National Academy of Sciences.

"This latest work extends the capabilities of our multi-material bioprinting platform to thick human tissues, bringing us one step closer to creating architectures for tissue repair and regeneration," says Wyss Core Faculty member Jennifer A. Lewis, Sc.D., senior author on the study, who is also the Hansorg Wyss Professor of Biologically Inspired Engineering at SEAS.

To date, scaling up human tissues built of a variety of cell types has been limited by a lack of robust methods for embedding life-sustaining vascular networks. Building on their earlier work, Lewis and her team have now increased the tissue thickness threshold by nearly tenfold, setting the stage for future advances in tissue engineering and repair. The method combines vascular plumbing with living cells and an extracellular matrix, enabling the structures to function as living tissues.

In the study, Lewis and her team showed that their 3D bioprinted tissues could sustain and function as living tissue architectures for upwards of six weeks.

In the study, Lewis' team demonstrated the 3D printing of one centimeter-thick tissue containing human bone marrow stem cells surrounded by connective tissue. By pumping bone growth factors through the supporting vasculature lined with the same endothelial cells found in our blood vessels, the team induced cell development toward bone cells over the course of one month.

"This research will help to establish the fundamental scientific understanding required for bioprinting of vascularized living tissues," Zhijian Pei, National Science Foundation Program Director for the Directorate for Engineering Division of Civil, Mechanical and Manufacturing Innovation, which funded the project. "Research such as this enables broader use of 3-D human tissues for drug safety and toxicity screening and, ultimately, for tissue repair and regeneration."

Lewis' novel 3D bioprinting method uses a customizable, printed silicone mold to house and plumb the printed tissue structure. Inside this mold, a grid of vascular channels is printed first, over which ink containing living stem cells is then printed. The inks are self-supporting and strong enough to hold shape as the structure's size increases with each layer of deposition.

At intersections meeting within the foundational vascular grid, vertical vascular pillars are printed, which interconnect a pervasive network of microvessels throughout all dimensions of the stem cell-laden tissue. After printing, a liquid composed of fibroblasts and extracellular matrix fills in the open regions around the 3D printed tissue, cross linking the entire structure.

The resulting soft tissue structure is replete with blood vessels, and via a single inlet and outlet on opposite ends of the chip, can be immediately perfused with nutrients to ensure survival of the cells. The pervasive vasculature facilitates stem cell differentiation by enabling delivery of cell growth factors throughout all areas of the tissue.

To achieve a variety of tissue shapes, thicknesses, and compositions, the shape of the printed silicone chip can be customized and the cell inks can be tuned to include a wide variety of cell types.

"Having the vasculature pre-fabricated within the tissue allows enhanced cell functionality at the deep core of the tissue, and gives us the ability to modulate those cell functions through the use of perfusable substances such as growth factors," said David Kolesky, a graduate researcher at the Wyss Institute and SEAS and one of the study's first authors.

"Jennifer and her team are shifting the paradigm in the field of tissue engineering based on their unique bioprinting approach," said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology program at Boston Children's Hospital, and Professor of Bioengineering at SEAS.

"Their ability to build living 3D vascularized tissues from the bottom-up provides a potential way to form macroscale functional tissue replacements that can be surgically connected to the body's own blood vessels to provide immediate perfusion of these artificial tissues, and thus, greatly increase their likelihood of survival. This would overcome many of the problems that held back tissue engineering from clinical success in the past."

In addition to Lewis and Kolesky, other team members on the new study include co-first authors Kimberly Homan, Ph.D., Research Associate at the Wyss Institute, and Mark Skylar-Scott, Ph.D., Postdoctoral Fellow at the Wyss Institute.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Wyss Institute for Biologically Inspired Engineering at Harvard
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Braille maps for blind and visually impaired created with 3-D printer
Piscataway NJ (SPX) Mar 02, 2016
Using a high-tech 3-D printer, a Rutgers undergraduate and his professor created sophisticated braille maps to help blind and visually impaired people navigate a local training center. The three plastic tactile maps are for each floor at the Joseph Kohn Training Center, a state-funded facility for the blind and visually impaired in New Brunswick. And the goal is to print maps for all of th ... read more


TECH SPACE
Recoupling crops and livestock offers energy savings to dairy farmers

Climate change poised to hurt food supplies: study

NGOs sue Monsanto, EU food safety watchdog over pesticide

University of Guam scientist and colleagues tag coconut rhinoceros beetles

TECH SPACE
Demystifying mechanotransduction ion channels

Quantum dot solids: This generation's silicon wafer

World's first parallel computer based on biomolecular motors

Topological insulators: Magnetism is not causing loss of conductivity

TECH SPACE
Two years on, MH370 kin want search extended

China revs up new aero-engine group

Post-sanctions Iran invites Boeing for talks: minister

Malaysia, Australia move to retrieve suspected aircraft debris

TECH SPACE
Scandal-hit VW gives new dates for 2015 results, shareholders' meet

Volkswagen says CEO got diesel snag warning as early as May 2014

Electric supercar wins young Croatian global fame

Who and what is driving and when

TECH SPACE
New bank another BRICS in Beijing's diplomatic wall

Turkey suspends contested gold mine project after protests

Chinese firm aims to start production at flashpoint Myanmar mine

Ride and home sharing painted as old ideas made new

TECH SPACE
Thousands attend funeral of slain Honduran environmentalist

Honduran environmentalist murdered: family

Green groups urge DR Congo to keep forest moratorium

New insights into the seasonality of Amazon's evergreen forests

TECH SPACE
Nonstop LEOP full stop

NASA Data Used to Track Groundwater in Pakistan

Third Sentinel satellite launched for Copernicus

Sentinel-3A poised for liftoff

TECH SPACE
Physicists promise a copper revolution in nanophotonics

Stretchable nano-devices towards smart contact lenses

New ways to construct contactless magnetic gears

Scientists take nanoparticle snapshots









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.