GPS News  
STELLAR CHEMISTRY
Russian Doll Galaxy Clusters Reveal Information About Dark Energy
by Staff Writers
Huntsville AL (SPX) May 03, 2016


Image courtesy X-ray: NASA/CXC/Univ. of Alabama/A. Morandi et al; Optical: SDSS, NASA/STScI. For a larger version of this image please go here.

Astronomers have used data from NASA's Chandra X-ray Observatory, ESA's Planck and a large list of optical telescopes to develop a powerful new method for investigating dark energy, the mysterious energy that is currently driving the accelerating expansion of the universe.

The technique takes advantage of the observation that the outer reaches of galaxy clusters, the largest structures in the universe held together by gravity, show similarity in their X-ray emission profiles and sizes. More massive clusters are simply scaled up versions of less massive ones.

"In this sense, galaxy clusters are like Russian dolls, with smaller ones having a similar shape to the larger ones," said Andrea Morandi of the University of Alabama at Huntsville, who led the study. "Knowing this lets us compare them and accurately determine their distances across billions of light years."

By using these galaxy clusters as distance markers, astronomers can measure how quickly the Universe was expanding at different times since the Big Bang. According to Einstein's theory of general relativity, the rate of expansion is determined by the properties of dark energy plus the amount of matter in the Universe, where the latter is mostly made up of unseen material called dark matter.

If the assumed cosmological parameters (e.g., the properties of dark energy or dark matter) are incorrect, then distant clusters will not appear to be similar, that is their sizes will be larger or smaller than expected. The cosmological parameters are then adjusted so that all of the different clusters, with different masses and different distances, appear to be similar. The process is akin to determining the unknown weight of an object by adding or subtracting known weights to a balance scale until the two sides balance.

These latest results confirm earlier studies that the properties of dark energy have not changed over billions of years. They also support the idea that dark energy is best explained by the "cosmological constant," which Einstein first proposed and is equivalent to the energy of empty space.

"Although we've looked hard at other explanations," said co-author Ming Sun, also of the University of Alabama at Huntsville, "it still appears that dark energy behaves just like Einstein's cosmological constant."

The researchers studied 320 galaxy clusters with distances from Earth that ranged from about 760 million light years to about 8.7 billion light years. This spans the era where dark energy caused the once-decelerating universe to accelerate, a discovery that shocked many astronomers when it was made almost two decades ago.

To determine more precise results than with the Chandra X-ray data alone, the researchers combined this data with information on the expansion rate of the universe from optical observations of supernovas, and work from Planck on the cosmic microwave background, the leftover radiation from the Big Bang.

"The nature of dark energy is one of the biggest mysteries in physics, so it's crucial to invent new tools for studying its properties, since different methods can have very different assumptions, strengths and weaknesses," said Morandi. "We think this new technique has the ability to provide a big leap forward in our understanding of dark energy."

A paper describing these results appeared in the April 11th, 2016 issue of the Monthly Notices of the Royal Astronomical Society journal and is available online. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.?


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Chandra
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Dark matter does not contain certain axion-like particles
Stockholm, Sweden (SPX) Apr 25, 2016
Researchers at Stockholm University are getting closer to corner light dark-matter particle models. Observations can rule out some axion-like particles in the quest for the content of dark matter. The article is now published in the Physical Review Letters. Physicists are still struggling with the conundrum of identifying more than 80 percent of the matter in the Universe. One possibility ... read more


STELLAR CHEMISTRY
Crop advances grow with protection

Bacteria beneficial to plants have spread across California

Australian researchers map micronutrients in white rice

Honey bee study of parasites and disease reveals troubling trends

STELLAR CHEMISTRY
Spintronics for future information technologies

NREL offers path to high-performance 2-D semiconductor devices

Making electronics out of coal

New technique to probe 'noise' in quantum computing devised

STELLAR CHEMISTRY
LONGBOW fire control radar for India's Apache helos

Saab to continue Swedish military helicopter support

China Eastern Airlines to buy 35 planes from Airbus and Boeing

Raytheon producing targeting system variant for Air Force

STELLAR CHEMISTRY
Google autonomous car project teams with FiatChrysler

China's Baidu eyes driverless car production by 2020

New graphene-based film may keep your next laptop cool

Volkswagen vows to overcome emissions-cheating crisis

STELLAR CHEMISTRY
TTIP: a proposed trade treaty in troubled waters

Greenpeace leaks US-EU trade papers, fears for consumers

Australian Craig Wright says he created Bitcoin

US-EU trade deal 'risks' emerge in leak

STELLAR CHEMISTRY
Model predicts how forests will respond to climate change

Old-growth forests may provide buffer against rising temperatures

The unique challenges of conserving forest giants

Cambodia to add 1 million hectares of protected forest

STELLAR CHEMISTRY
Cracking the Code in Satellite Data

Satellite coverage for polar bears and penguins

Sentinel-1B delivers

BlackSky inks US deal to enhance global decision-making

STELLAR CHEMISTRY
New movies from the microcosmos

Ultra-long, one-dimensional carbon chains are synthesised for the first time

Rice introduces Teslaphoresis to help assemble Nanotubes

Intracellular recordings using nanotower electrodes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.