Subscribe free to our newsletters via your
. GPS News .




ROBO SPACE
Robot ants successfully mimic real colony behavior
by Staff Writers
London, UK (SPX) Apr 02, 2013


This image shows the robot ants (Alices) pursuing a light trail around the constructed maze. Credit: Simon Garnier: Garnier S, Combe M, Jost C, Theraulaz G (2013) Do Ants Need to Estimate the Geometrical Properties of Trail Bifurcations to Find an Efficient Route? A Swarm Robotics Test Bed. PLOS Comput Biol 9(3): e1002903. doi:10.1371/journal.pcbi.1002903.

Scientists have successfully replicated the behaviour of a colony of ants on the move with the use of miniature robots, as reported in the journal PLOS Computational Biology.

The researchers, based at the New Jersey Institute of Technology (Newark, USA) and at the Research Centre on Animal Cognition (Toulouse, France), aimed to discover how individual ants, when part of a moving colony, orient themselves in the labyrinthine pathways that stretch from their nest to various food sources.

The study focused mainly on how Argentine ants behave and coordinate themselves in both symmetrical and asymmetrical pathways. In nature, ants do this by leaving chemical pheromone trails.

This was reproduced by a swarm of sugar cube size robots, called "Alices", leaving light trails that they can detect with two light sensors mimicking the role of the ants' antennae.

In the beginning of the experiment, where branches of the maze had no light trail, the robots adopted an "exploratory behaviour" modelled on the regular insect movement pattern of moving randomly but in the same general direction. This led the robots to choose the path that deviated least from their trajectory at each bifurcation of the network. If the robots detected a light trail, they would turn to follow that path.

One outcome of the robotic model was the discovery that the robots did not need to be programmed to identify and compute the geometry of the network bifurcations.

They managed to navigate the maze using only the pheromone light trail and the programmed directional random walk, which directed them to the more direct route between their starting area and a target area on the periphery of the maze.

Individual Argentine ants have poor eyesight and move too quickly to make a calculated decision about their direction. Therefore the fact that the robots managed to orient themselves in the maze in a similar fashion than the one observed in real ants suggests that a complex cognitive process is not necessary for colonies of ants to navigate efficiently in their complex network of foraging trails.

"This research suggests that efficient navigation and foraging can be achieved with minimal cognitive abilities in ants," says lead author Simon Garnier. "It also shows that the geometry of transport networks plays a critical role in the flow of information and material in ant as well as in human societies."

Garnier S, Combe M, Jost C, Theraulaz G (2013) Do Ants Need to Estimate the Geometrical Properties of Trail Bifurcations to Find an Efficient Route? A Swarm Robotics Test Bed. PLOS Comput Biol 9(3): e1002903. doi:10.1371/journal.pcbi.1002903

.


Related Links
Public Library of Science
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ROBO SPACE
Small swarm of robots could do tasks
Sheffield, England (UPI) Mar 29, 2013
Swarms of robots acting together to carry out jobs could provide new opportunities for humans to harness the power of machines, British researchers say. Scientists at the Sheffield Center for Robotics say the ability to control swarms of small robots could prove hugely beneficial in a number of fields from military to medical. Researchers at the center have been working to progr ... read more


ROBO SPACE
Study looks at why chickens overeat

Researchers Find Novel Way Plants Pass Traits to Next Generation

China fertiliser leaves tons of harmful waste: report

Pesticide combination affects bees' ability to learn

ROBO SPACE
Technique for cooling molecules may be a stepping stone to quantum computing

Penn engineers enable 'bulk' silicon to emit visible light for the first time

TED brings innovation talk to Intel

Ultra-precision positioning

ROBO SPACE
Peru mulls replacing aged air force jets

Two Chinese airlines record falls in 2012 profits

France says Malaysia can build jets if it buys Rafale

Navy tasks Virginia Tech research team with reducing deafening roar of fighter jets

ROBO SPACE
US announces stricter gasoline standards

Japan venture to bring electric tuk-tuks to Asia

China car maker BYD reports profit plunge

Man creates car that runs on liquid air

ROBO SPACE
US visa day sparks new debate on tech workers

Glencore-Xstrata delay merger to wait for Chinese nod

Paraguay set against Venezuela pact role

Taiwan, China agree to further bank investments

ROBO SPACE
Researchers question evaluation methods for protected areas in the Amazon

Decreased Water Flow May be Trade-off for More Productive Forest

Middle ground between unlogged forest and intensively managed lands

Hunting for meat impacts on rainforest

ROBO SPACE
China to launch high-res Earth-observation satellite

How hard is it to 'de-anonymize' cellphone data?

Wearable system can map difficult areas

A Closer Look at LDCM's First Scene

ROBO SPACE
Imaging methodology reveals nano details not seen before

Glass-blowers at a nano scale

Nanoparticles show promise as inexpensive, durable and effective scintillators

Scientists develop innovative twists to DNA nanotechnology




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement