Subscribe free to our newsletters via your
. GPS News .




WATER WORLD
Rising Ocean Acidification Leads to Anxiety in Fish
by Staff Writers
San Diego CA (SPX) Dec 06, 2013


A new study tested ocean acidification in juvenile rockfish.

A new research study combining marine physiology, neuroscience, pharmacology, and behavioral psychology has revealed a surprising outcome from increases of carbon dioxide uptake in the oceans: anxious fish.

A growing base of scientific evidence has shown that the absorption of human-produced carbon dioxide into the world's oceans is causing surface waters to decline in pH, causing a rise in acidity. This ocean acidification is known to disrupt the growth of shells and skeletons of certain marine animals but other consequences such as behavioral impacts have been largely unknown.

In a study published in the journal Proceedings of the Royal Society B (Biological Sciences), scientists at Scripps Institution of Oceanography at UC San Diego and MacEwan University in Edmonton, Canada, have shown for the first time that rising acidity levels increase anxiety in juvenile rockfish, an important commercial species in California.

Using a camera-based tracking software system, the researchers compared a control group of rockfish kept in normal seawater to another group in waters with elevated acidity levels matching those projected for the end of the century.

They measured each group's preference to swim in light or dark areas of a testing tank, which is a known test for anxiety in fish. The researchers found out that normal juvenile rockfish continuously moved between the light and dark areas of the tank.

However, experiments have shown that fish administered with an anxiety-inducing drug (anxiogenic) prefer the darker area and seldom venture into the light. Hence, dark-preference is indicative of increased anxiety in juvenile rockfish.

Next, the researchers found that rockfish exposed to acidified ocean conditions for one week also preferred the dark area of the tank, indicating they were significantly more anxious than their normal seawater counterparts.

Rockfish exposed to acidified ocean conditions remained anxious even one week after being placed in seawater with normal carbon dioxide levels. Only after the twelfth day in normal seawater did the anxious fish behave like the control group and resumed normal behavior.

The researchers say the anxiety is traced to the fish's sensory systems, and specifically "GABAA" (neural gamma-aminobutyric acid type A) receptors, which are also involved in human anxiety levels. Exposure to acidified water leads to changes in the concentrations of ions in the blood (especially chloride and bicarbonate), which reverses the flux of ions through the GABAA receptors.

The end result is a change in neuronal activity that is reflected in the altered behavioral responses described in this study.

"These results are novel and thought-provoking," said Martin Tresguerres, a Scripps marine biologist and study coauthor, "because they reveal a potential negative effect of ocean acidification on fish behavior that can possibly affect normal population dynamics and maybe even affect fisheries."

Tresguerres says anxious behavior is a concern for juvenile rockfish because they live in highly dynamic environments such as kelp forests and drifting kelp paddies that offer variable lighting and shading conditions.

"If the behavior that we observed in the lab applies to the wild during ocean acidification conditions, it could mean that juvenile rockfish may spend more time in the shaded areas instead of exploring around," said Tresguerres.

"This would have negative implications due to reduced time foraging for food, or alterations in dispersal behavior, among others."

Alteration of GABAA receptor function in fish exposed to ocean acidification was originally described by Phil Munday (James Cook University, Australia), Goran Nilsson (University of Oslo) and collaborators, who found that ocean acidification impaired olfaction in tropical clown fish.

The study by Hamilton, Holcombe, and Tresguerres adds anxiety behavior to the list of biological functions that are susceptible to future ocean acidification, and it is the first to describe effects of ocean acidification on the physiology and behavior of Californian fish.

"Behavioral neuroscience in fish is a relatively unexplored field, but we do know that fish are capable of many complicated cognitive tasks of learning and memory. Increased anxiety in rockfish could have a detrimental impact on many aspects of their daily functioning," said Trevor James Hamilton, a neurobiologist at MacEwan University and coauthor of the study.

Tresguerres noted that laboratory tests cannot fully model the steady progression of acidity levels that will be seen in the wild over years and decades. "Nonetheless, our results suggest that ocean acidification may affect an important aspect of fish behavior."

In addition to Tresguerres and Hamilton, Adam Holcombe of MacEwan University coauthored the study. The National Science Foundation, UC San Diego Academic Senate, Scripps Institution of Oceanography, The Alfred P. Sloan Foundation, MacEwan Research Office, Arts and Science, and Student Enrichment Fund supported the research.

.


Related Links
Scripps Institution of Oceanography
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Feast and famine on the abyssal plain
Moss Landing, CA (SPX) Nov 13, 2013
Animals living on the abyssal plains, miles below the ocean surface, don't usually get much to eat. Their main source of food is "marine snow"-a slow drift of mucus, fecal pellets, and body parts-that sinks down from the surface waters. However, researchers have long been puzzled by the fact that, over the long term, the steady fall of marine snow cannot account for all the food consumed by anim ... read more


WATER WORLD
How onions recognize when to bulb

Benefit of bees even bigger than thought: food study

Romania sees opportunity in China's new taste for meat

Flower Power - Researchers breed new varieties of chamomile

WATER WORLD
A step closer to composite-based electronics

50 Meters of Optical Fiber Shrunk to the Size of Microchips

Chips meet Tubes: World's First Terahertz Vacuum Amplifier

NIST demonstrates how losing information can benefit quantum computing

WATER WORLD
Northrop Grumman Team Demonstrates Virtual Air Refueling Across Distributed Simulator Locations for USAF

Purdue science balloon, thought lost, makes dramatic return to campus

German helicopter deal examined by federal auditors: report

US telling airlines to stay safe in East China Sea

WATER WORLD
Britain pledges commitment to driverless car technology

China approves $1.3 bn Renault-Dongfeng joint venture

Sweden joins race for self-driving cars

Motorized bicycle wheel said to give 20 mph speed, range of 30 miles

WATER WORLD
China exports grow strongly on demand from US, Europe

Beijing second costliest Asian city for expats: survey

Chinese tycoon unveils $10bn Ukrainian port project: report

Electronic pickpocketing risk from radio-frequency gadgets

WATER WORLD
Researchers identify genetic fingerprints of endangered conifers

Lowering stand density reduces mortality of ponderosa pine stands

VTT introduces deforestation monitoring method for tropical regions

Philippines to plant more mangroves in wake of Typhoon Haiyan

WATER WORLD
Mysteries of Earth's radiation belts uncovered by NASA twin spacecraft

Mapping the world's largest coral reef

Indra To Manage And Operate The Main Sentinel-2

NASA iPad app highlights the face of a changing Earth

WATER WORLD
Ultra-sensitive force sensing with a levitating nanoparticle

Graphene nanoribbons for 'reading' DNA

New hologram technology created with tiny nanoantennas

Nano magnets arise at 2-D boundaries




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement