GPS News  
Revamped Experiment Could Detect Elusive Particle

illustration only
by Aaron Hoover
Gainesville, FL (SPX) Apr 25, 2007
An experiment called "shining light through walls" would seem hard to improve upon. But University of Florida physicists have proposed a way to do just that, a step they say considerably improves the chance of detecting one of the universe's most elusive particles, a candidate for the common but mysterious dark matter.

In a paper that appears online today in the journal Physical Review Letters, physicists at the University of Florida and Lawrence Livermore National Laboratory propose a redesign of the experiment currently being attempted in various forms by several groups of physicists worldwide. Although theoretical at the moment, they say their design could make such experiments a billion times more sensitive in their goal of detecting axions.

Axions are elemental particles whose confirmation would shed light on several different conundrums in particle physics. These could include pinning down the nature of dark matter, the mysterious substance said to make up 30 percent of the universe but so far observed only indirectly by its effects.

"A half dozen groups want to do this experiment, and some of them probably will try this approach," said Pierre Sikivie, a faculty member in UF's physics department and an author of the paper. "It works in principle, but in reality it will take some effort to set this up right so that it can produce a result."

The unimproved experiment seeks to detect axions by shining a laser down the bore of a powerful superconducting magnet. A wall in the middle stops the laser cold, with the theoretical axions continuing through the wall and into the other side of the magnet. There, the magnet reconverts them into photons, or particles of light.

The detection of this light "reappearing" on the other side of the wall is what gives the experiment its iconic name.

Researchers in the U.S. and Europe are in various stages of conducting the experiment. The activity has been stimulated by a recent Italian experiment that claims to have discovered axion-like particles. The hope is to confirm the Legnaro National Laboratories' results or take them a step further.

Sikivie, UF physics professor David Tanner and Karl van Bibber, a physicist at the Lawrence Livermore National Laboratory, propose a redesign of the "shining light through walls" experiment to make it, in their words, "vastly more sensitive."

In a nutshell, they suggest placing pairs of highly reflective mirrors called Fabry-Perots cavities on both sides of the wall. The cavity on the laser light side of the wall would cause the light to bounce back and forth repeatedly, as though in an echo chamber. This action would produce many more of the hypothesized axions than a single beam of light, making them easier to detect on the other side of the wall.

"What happens is, because the light goes back and forth many times as it goes through the magnet, it produces more axions," Sikivie said.

The Fabry-Perot cavity on the other side of the wall would perform a similar function, producing even more photons from the added axions.

Sikivie said researchers are doing separate experiments to detect axions produced by the sun, which would seem to be an easier approach because the sun is a much more powerful source than any laser. But the modified experiment would at least in theory have a higher sensitivity than these solar-based experiments.

"With these two cavities on both sides, it actually gets better, by a factor of 10 maybe, than the solar axion experiments," he said.

Related Links
University of Florida physicists
Powering The World in the 21st Century at Energy-Daily.com
Our Polluted World and Cleaning It Up
China News From SinoDaily.com
Global Trade News
The Economy
All About Solar Energy at SolarDaily.com
Civil Nuclear Energy Science, Technology and News
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


New Model Describes Avalanche Behavior Of Superfluid Helium
Champaign IL (SPX) Apr 25, 2007
By utilizing ideas developed in disparate fields, from earthquake dynamics to random-field magnets, researchers at the University of Illinois have constructed a model that describes the avalanche-like, phase-slip cascades in the superflow of helium.







  • Australia Fears Jet Flight Guilt Could Hit Tourism
  • Nondestructive Testing Keeps Bagram Aircraft Flying
  • New FAA Oceanic Air Traffic System Designed By Lockheed Martin Fully Operational
  • NASA Seeks New Research Proposals

  • Driverless Car Goes On Show In London
  • Made In USA Losing Cachet
  • Technique Creates Metal Memory And Could Lead To Vanishing Dents
  • Toyota Anticipates Sharp Increase In Its Hybrid Sales

  • TSAT Team Moves Closer To Developing Flight-Ready Laser Terminals
  • Raytheon To Supply Canada With Enhanced Position Location Reporting System Terminals
  • Intelsat To Test Internet Routing In Space For The US Military
  • Northrop Grumman And LockMart Team Up For Integrated Air And Missile Defense Battle Command

  • Russia Wants Joint Analysis Of US Missile Shield Plans
  • Has Eastern Europe Finally Got Its Revenge With ABM Games
  • Russia Rebuffs US Overtures On Missile Shield
  • Russia Rejects US Offer On Missile Shield

  • Researcher Finds Negative Effects Of Colonization On Slash-And-Burn Farming In Borneo
  • More Nutritious And Less Toxic
  • Gates Grant To Help Poor Countries Contribute To Doomsday Seed Vault
  • Winter Flounder On The Fast Track To Recovery

  • Wireless Sensors Limit Earthquake Damage
  • Tsunami Emergency In Solomons Declared Over
  • DigitalGlobe And GeoEye Partner With The USGS In Support Of International Charter
  • Philippine Survivors Left Feeling Forgotten

  • New Family Of Pseudo-Metallic Chemicals Could Create New Electronic Materials
  • Ultrasound Upgrade Produces Images That Work Like 3-D Movies
  • Scientists Design New Super-Hard Material
  • Everything Starts With Recognition

  • Antarctic Lake Robot Probe Sets Sights On Outer Space
  • Boeing and iRobot Team to Develop New Recon Robot For Military And Civil Use
  • Swarms Of Nano-Nauts
  • Boeing Orbital Express Conducts Autonomous Spacecraft-to-Spacecraft Fluid and Component Transfer

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement