Subscribe free to our newsletters via your
. GPS News .




CLIMATE SCIENCE
Researchers warn against abrupt stop to geoengineering method
by Staff Writers
London, UK (SPX) Feb 24, 2014


File image.

As a range of climate change mitigation scenarios are discussed, University of Washington researchers have found that the injection of sulfate particles into the atmosphere to reflect sunlight and curb the effects of global warming could pose a severe threat if not maintained indefinitely and supported by strict reductions in greenhouse gas (GHG) emissions.

The new study, published today, 18 February, in IOP Publishing's journal Environmental Research Letters, has highlighted the risks of large and spatially expansive temperature increases if solar radiation management (SRM) is abruptly stopped once it has been implemented.

SRM is a proposed method of geoengineering whereby tiny sulfate-based aerosols are released into the upper atmosphere to reflect sunlight and cool the planet. The technique has been shown to be economically and technically feasible; however, its efficacy depends on its continued maintenance, without interruption from technical faults, global cooperation breakdown or funding running dry.

According to the study, global temperature increases could more than double if SRM is implemented for a multi-decadal period of time and then suddenly stopped, in relation to the temperature increases expected if SRM was not implemented at all.

The researchers used a global climate model to show that if an extreme emissions pathway-RCP8.5-is followed up until 2035, allowing temperatures to rise 1C above the 1970-1999 mean, and then SRM is implemented for 25 years and suddenly stopped, global temperatures could increase by 4C in the following decades.

This rate of increase, caused by the build-up of background greenhouse gas emissions, would be well beyond the bounds experienced in the last century and more than double the 2C temperature increase that would occur in the same timeframe if SRM had not been implemented.

On a regional and seasonal scale, the temperature changes would be largest in an absolute sense in winter over high latitude land, but compared to historical fluctuations, temperature changes would be largest in the tropics in summertime, where there is usually very little variation.

Lead author of the research, Kelly McCusker, from the University of Washington, said: "According to our simulations, tropical regions like South Asia and Sub-Saharan Africa are hit particularly hard, the very same regions that are home to many of the world's most food insecure populations. The potential temperature changes also pose a severe threat to biodiversity."

Furthermore, the researchers used a simple climate model to study a variety of plausible greenhouse gas scenarios and SRM termination years over the 21st century. They showed that climate sensitivity-a measure of how much the climate will warm in response to the greenhouse effect-had a lesser impact on the rate of temperature changes.

Instead, they found that the rates of temperature change were determined by the amount of GHG emissions and the duration of time that SRM is deployed.

"The primary control over the magnitude of the large temperature increases after an SRM shutoff is the background greenhouse gas concentrations. Thus, the greater the future emissions of greenhouse gases, the larger the temperature increases would be, and, similarly, the later the termination occurs while GHG emissions continue, the larger the temperature increases," continued McCusker.

"The only way to avoid creating the risk of substantial temperature increases through SRM, therefore, is concurrent strong reductions of GHG emissions."

This paper can be downloaded here

.


Related Links
Institute of Physics
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLIMATE SCIENCE
Finding common ground fosters understanding of climate change
East Lansing MI (SPX) Feb 18, 2014
Grasping the concept of climate change and its impact on the environment can be difficult. Establishing common ground and using models, however, can break down barriers and present the concept in an easily understood manner. In a presentation at this year's meeting of the American Association for the Advancement of Science, Michigan State University systems ecologist and modeler Laura Schm ... read more


CLIMATE SCIENCE
Genetic discovery to keep crops disease-free

French organic winemaker in court for shunning pesticides

Nitrogen-tracking tools for better crops and less pollution

Agricultural productivity loss as a result of soil and crop damage from flooding

CLIMATE SCIENCE
A Step Closer to a Photonic Future

Better cache management could improve chip performance, cut energy use

Magnetism and an Electric Field

Flexible 1D-1R Memory Cell Array Assists Development of Wearable Computers

CLIMATE SCIENCE
Why is the US spending so much on the F-35 fighter?

BAE secures deal with Saudi Arabia on Typhoon jet pricing

Proposed supersonic plane to do without windows, video screens instead

French anti-airport protesters clash with police

CLIMATE SCIENCE
Charge 'sharing' by electric cars could ease strain on power grid

Apple and Tesla decline to comment on merger rumors

Bhutan to become green car showcase in deal with Nissan

Will Plug-in Cars Crash the Electric Grid?

CLIMATE SCIENCE
Made in USA: Pentagon to use only 100% American flags

Armani ends fashion week, Chinese firm buys Krizia

China confirms probe into Qualcomm

A canal across Nicaragua: is this for real?

CLIMATE SCIENCE
Massive logging leaves deep scars in Eastern Europe

Google-backed database steps up fight on deforestation

How global forest-destroyers are turning over a new leaf

Biodiversity in production forests can be improved without large costs

CLIMATE SCIENCE
Sharp-Eyed Proba-V Works Around The Clock

NASA Satellites See Arctic Surface Darkening Faster

NASA Data Find Some Hope for Water in Aral Sea Basin

Glowing plants a sign of health

CLIMATE SCIENCE
The thousand-droplets test

Molecular Traffic Jam Makes Water Move Faster through Nanochannels

Physicists at Mainz University build pilot prototype of a single ion heat engine

Quantum dots provide complete control of photons




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.