Subscribe free to our newsletters via your
. GPS News .




INTERN DAILY
Researchers strike gold with nanotech vaccine
by Staff Writers
London, UK (SPX) Jun 27, 2013


In this study the researchers created exceptionally small gold nanorods, just 21 nanometres wide and 57 nanometres long, which were almost exactly the same shape and size as the virus itself. The gold nanorods were successfully coated with the RSV F proteins and were bonded strongly thanks to the unique physical and chemical properties of the nanorods themselves.

Scientists in the US have developed a novel vaccination method that uses tiny gold particles to mimic a virus and carry specific proteins to the body's specialist immune cells.

The technique differs from the traditional approach of using dead or inactive viruses as a vaccine and was demonstrated in the lab using a specific protein that sits on the surface of the respiratory syncytial virus (RSV).

The results have been published in IOP Publishing's journal Nanotechnology by a team of researchers from Vanderbilt University.

RSV is the leading viral cause of lower respiration tract infections, causing several hundred thousand deaths and an estimated 65 million infections a year, mainly in children and the elderly.

The detrimental effects of RSV come, in part, from a specific protein, called the F protein, which coats the surface of the virus. The protein enables the virus to enter into the cytoplasm of cells and also causes cells to stick together, making the virus harder to eliminate.

The body's natural defence to RSV is therefore directed at the F protein; however, up until now, researchers have had difficulty creating a vaccine that delivers the F protein to the specialised immune cells in the body. If successful, the F protein could trigger an immune response which the body could 'remember' if a subject became infected with the real virus.

In this study the researchers created exceptionally small gold nanorods, just 21 nanometres wide and 57 nanometres long, which were almost exactly the same shape and size as the virus itself. The gold nanorods were successfully coated with the RSV F proteins and were bonded strongly thanks to the unique physical and chemical properties of the nanorods themselves.

The researchers then tested the ability of the gold nanorods to deliver the F protein to specific immune cells, known as dendritic cells, which were taken from adult blood samples.

Dendritic cells function as processing cells in the immune system, taking the important information from a virus, such as the F protein, and presenting it to cells that can perform an action against them?the T cells are just one example of a cell that can take action.

Once the F protein-coated nanorods were added to a sample of dendritic cells, the researchers analysed the proliferation of T cells as a proxy for an immune response. They found that the protein-coated nanorods caused the T cells to proliferate significantly more compared to non-coated nanorods and just the F protein alone.

Not only did this prove that the coated-nanorods were capable of mimicking the virus and stimulating an immune response, it also showed that they were not toxic to human cells, offering significant safety advantages and increasing their potential as a real-life human vaccine.

Lead author of the study, Professor James Crowe, said: "A vaccine for RSV, which is the major cause of viral pneumonia in children, is sorely needed. This study shows that we have developed methods for putting RSV F protein into exceptionally small particles and presenting it to immune cells in a format that physically mimics the virus. Furthermore, the particles themselves are not infectious."

Due to the versatility of the gold nanorods, Professor Crowe believes that their potential use is not limited to RSV.

"This platform could be used to develop experimental vaccines for virtually any virus, and in fact other larger microbes such as bacteria and fungi.

"The studies we performed showed that the candidate vaccines stimulated human immune cells when they were interacted in the lab. The next steps to testing would be to test whether or not the vaccines work in vivo" Professor Crowe continued.

"Gold nanorod vaccine for respiratory syncytial virus"

.


Related Links
Institute of Physics
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERN DAILY
Doctor claims breakthrough in race for spinal 'cure'
Hong Kong (AFP) June 26, 2013
A leading researcher into severe spinal cord injuries on Wednesday said trials for stem-cell therapy showed groundbreaking results in giving immobile patients the ability to walk again. After progress in a second round of tests using stem cells to regrow nerve fibres, the China Spinal Cord Injury Network (ChinaSCINet) has applied for regulatory approval in China for a third and final phase, ... read more


INTERN DAILY
Comparing genomes of wild and domestic tomato

Dutch government introduces nitrogen-reduction bill for nature areas

Rotation-resistant rootworms owe their success to gut microbes

Pesticides tainting traditional China herbs: Greenpeace

INTERN DAILY
Beyond Silicon: Transistors without Semiconductors

Two-Dimensional Atomically-Flat Transistors Show Promise for Next Generation Green Electronics

New TCH Series Offers Hermetically Sealed Tantalum Polymer Chip Capacitors For Aerospace Applications

Danish chemists in molecular chip breakthrough

INTERN DAILY
Lockheed Martin's Final JLTV Development Vehicle Rolls off Assembly Line

Maiden flight for Italian-assembled Chinook

Third F-35 for the UK Arrives at Eglin Air Force Base

Hollande seeks Rafale jet deal with Qatar

INTERN DAILY
Electric car maker Tesla debuts quick battery swap system

British team cracks 200 mph in electric car, sets record

Arnie defends his Hummer fleet as eco-friendly

Wolf urine, lion's roar keep deer from Japan transport

INTERN DAILY
China slaps anti-dumping tax on EU chemical

Taiwan's Hon Hai set to spin off units

Four Chinese butchered in PNG

Hollande urges talks to resolve EU-China trade row

INTERN DAILY
Study reveals potent carbon-storage potential of manmade wetlands

Wolf Lake Ancient Forest Is Endangered Ecosystem

The contribution of particulate matter to forest decline

Whitebark Pine Trees: Is Their Future at Risk

INTERN DAILY
Five Years of Stereo Imaging for NASA's TWINS

Vegetation as Seen by Suomi NPP

How did a third radiation belt appear in the Earth's upper atmosphere

Arianespace to launch Gokturk-1 high-resolution observation satellite

INTERN DAILY
Nanotechnology holds big potential for NMSU faculty

Sound waves precisely position nanowires

Nanoparticle Opens the Door to Clean-Energy Alternatives

Spot-welding graphene nanoribbons atom by atom




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement