GPS News  
ENERGY TECH
Researchers prove surprising chemistry inside a potential breakthrough battery
by Staff Writers
Chicago IL (SPX) Jan 22, 2016


Amin Salehi-Khojin, UIC assistant professor of mechanical and industrial engineering (right), and postdoctoral research associate Mohammad Asadi with their specially modified differential electrochemical mass spectrometry (DEMS) instrument. Image courtesy UIC College of Engineering. For a larger version of this image please go here.

Lithium-air batteries hold the promise of storing electricity at up to five times the energy density of today's familiar lithium-ion batteries, but they have inherent shortcomings. Researchers at the University of Illinois at Chicago have helped prove that a new prototype is powered by a surprising chemical reaction that may solve the new battery's biggest drawback.

Today's lithium-air batteries (in which the metallic lithium of the anode, or positive terminal, reacts with oxygen from the air) hold great promise, because they store energy in the form of chemical bonds of oxide compounds. Versions tested to date have stored and released energy from lithium peroxide, an insoluble substance that clogs the battery's electrode.

Battery scientists at the U.S. Department of Energy's Argonne National Laboratory developed a prototype that they claimed had the surprising ability to produce only lithium's superoxide, not peroxide, as the battery discharges. Unlike troublesome lithium peroxide, lithium superoxide easily breaks down again into lithium and oxygen, thus offering the possibility of a battery with high efficiency and good cycle life.

The Argonne group designed the battery to consume one electron rather than two and produce the superoxide, said UIC's Amin Salehi-Khojin, assistant professor of mechanical and industrial engineering. But it was difficult to prove the reaction took place.

"Ex-situ analysis is not accurate enough to prove such a big claim," he said.

Salehi-Khojin and postdoctoral research associate Mohammad Asadi devised a state-of-the-art mass spectroscopy apparatus to measure the electrochemical reaction products in situ during charging or discharge of the battery. The system operates in ultra-high vacuum and is "very sensitive to the tiniest change in oxygen concentration," said Asadi, who is one of five first authors on the paper in Nature.

For the first time, the UIC researchers were able to show that one electron per oxygen atom was produced, indicating lithium superoxide, not peroxide, was forming in the battery. They were also able to show that no other lithium compounds were generated as side-products.

"This is going to be a valuable system for continuing the study of this battery and other types of metal-air batteries," said Salehi-Khojin. "Not only can we analyze the products of the electrochemical reaction, we can elucidate the reaction pathway. If we know the reaction pathway, we'll know how to design the next generation of that battery for energy efficiency and cost effectiveness."

The findings are reported in the Jan. 11, 2016 issue of Nature. Other authors on the Nature paper are Argonne's Jun Lu, Dengyun Zhai, Zonghai Chen, Khalil Amine, Xiangyi Luo, Kah Chun Lau, Hsien-Hau Wang, Scott Brombosz, Larry A. Curtiss, Jianguo Wen and Dean J. Miller; Yun Jung Lee, Yo Sub Jeong, Jin-Bum Park and Yang-Kook Sun of Hanyang University in Seoul; Zhigang Zak Fang of the University of Utah; and Bijandra Kumar of the University of Kentucky.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Illinois at Chicago
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Self-heating lithium-ion battery could beat the winter woes
University Park PA (SPX) Jan 21, 2016
A lithium-ion battery that self heats if the temperature is below 32 degrees Fahrenheit has multiple applications, but may have the most impact on relieving winter "range anxiety" for electric vehicle owners, according to a team of researchers from Penn State and EC Power, State College. "It is a long standing problem that batteries do not perform well at subzero temperatures," said Chao-Y ... read more


ENERGY TECH
Bird flu detected in US turkey flock

Breed-your-own insect 'revolution' for the kitchen

Poultry farming frozen for bird flu cleanup in French SW

S.Africa to import maize after driest season in 100 years

ENERGY TECH
Quantum computing is coming - are you prepared for it?

Dutch hi-tech group ASML posts 'record' year in 2015

Uncovering oxygen's role in enhancing red LEDs

How copper makes organic light-emitting diodes more efficient

ENERGY TECH
Rockwell Collins to support Pakistani C-130 fleet

Lockheed Martin to perform F-35A fuel tank modification

US Air Force shelves Warthog plane retirement amid IS fight: media

MH17 relatives demand release of radar images

ENERGY TECH
Renault emissions troubles raise question for auto sector

Renault recalls vehicles amid failed emissions test

Charging a car could soon be as quick as filling a tank

Renault shares keep on skidding on emission fears

ENERGY TECH
US firms moving operations out of China: survey

Ukraine launches new China trade route bypassing Russia

WTO faults EU in nuts and bolts dispute with China

China FDI up 5.6 percent in 2015: official data

ENERGY TECH
NUS study shows the causes of mangrove deforestation in Southeast Asia

The Amazon's future

Tens of millions of trees in danger from California drought

Modeling Amazonian transitional forest micrometeorology

ENERGY TECH
Flooding along the Mississippi seen from space

Fires burning in Africa and Asia cause high ozone in tropical Pacific

Satellites find sustainable energy in cities

Giant icebergs play key role in removing CO2 from the atmosphere

ENERGY TECH
FAU researchers show how mother-of-pearl is formed from nanoparticles

Shiny fish skin inspires nanoscale light reflectors

Nano-hybrid materials create magnetic effect

Nanodevice, build thyself









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.