GPS News  
SOLAR DAILY
Researchers improve safety of lead-based perovskite solar cells
by Staff Writers
Golden CO (SPX) Feb 27, 2020

NREL scientists Kai Zhu (left), Fei Zhang, and Joseph Berry figured out a way to sequester lead if a perovskite solar cell is damaged. Photo by Dennis Schroeder, NREL

Researchers at the National Renewable Energy Laboratory (NREL) and Northern Illinois University (NIU) have developed a technique to sequester the lead used to make perovskite solar cells, a highly efficient emerging photovoltaic technology.

The light-absorbing layer in a perovskite solar cell contains a minute amount of lead. The presence of this toxic material in the developing technology could turn some consumers away when perovskite solar cells become commercially available, said Kai Zhu, a senior scientist in the Chemistry and Nanoscience Center at NREL.

Zhu and other researchers at NREL and NIU outlined their solution in a paper newly published in Nature, titled "On-Device Lead Sequestration for Perovskite Solar Cells."

"This is a big step in the correct direction," Zhu said. His co-authors are Fei Zhang and Joseph Berry of NREL, Haiying He of Valparaiso University, and Xun Li and Tao Xu from NIU. Xu served as the lead researcher from NIU.

"Lead toxicity has been one of the most vexing, last-mile challenges facing perovskite solar cells," Xu said. "Our on-device lead-sequestration method renders a 'safety belt' for this fascinating photovoltaic technology."

A lead-based perovskite solar cell's highest efficiency - its ability to turn sunlight into electricity - runs close to 25%. Without the lead, that efficiency is cut in half.

Silicon solar panels, the industry's dominant technology, contain lead solder, but that lead is not water soluble. The lead used in perovskites can be dissolved in water. While existing analyses show this is not a major concern, the researchers developed a method to ensure the lead is sequestered should a cell become damaged. They coated the front and back of a perovskite solar cell with two different lead-absorbing films. Then, they damaged the two sides of the cell - slashing one with a knife and smashing the other with a hammer.

The researchers then immersed the damaged cells in water of various types, including pure water, acid water, and even flowing water to simulate heavy rain. They found that these lead-absorbing films can prevent more than 96% of lead from leaking into the water from the damaged cells.

The addition of the lead-absorbing layers did not affect the performance of the solar cell, the researchers found.


Related Links
National Renewable Energy Laboratory
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Solar technology breakthrough at the University of Queensland
Brisbane, Australia (SPX) Feb 24, 2020
The development of next generation solar power technology that has potential to be used as a flexible 'skin' over hard surfaces has moved a step closer, thanks to a significant breakthrough at The University of Queensland. UQ researchers set a world record for the conversion of solar energy to electricity via the use of tiny nanoparticles called 'quantum dots', which pass electrons between one another and generate electrical current when exposed to solar energy in a solar cell device. The de ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Sweden creates $1 mn prizes for sustainable food solutions

Veggie-loving monkeyface prickleback may be future sustainable protein

Locust swarms arrive in South Sudan, threatening more misery

China craving for Senegal peanuts rattles local business

SOLAR DAILY
Black phosphorous tunnel field-effect transistor as an alternative ultra-low power switch

New material has highest electron mobility among known layered magnetic materials

New Argonne etching technique could advance the way semiconductor devices are made

Artificial atoms create stable qubits for quantum computing

SOLAR DAILY
Air Canada extends flight suspension to Chinese cities, citing virus

Asia-Pacific airlines could lose $27.8 bn to coronavirus: IATA

France, Germany sign prototype contract for future fighter jet

Sikorsky lands $470.8M modification for Presidential helicopter upgrade

SOLAR DAILY
Plastic shields protect China's ride-hailing drivers against virus

Tesla resumes work on German plant after court ruling

Virus-hit Jaguar rushes car parts to UK in suitcases: reports

Tesla shifts gears with plans to issue more shares

SOLAR DAILY
Russia counts China trade losses from coronavirus

Trump economic advisor sees no US recession ahead

'Fiscal hawks' now endangered as US shrugs at debt

China shutdowns to impact economy: White House economist

SOLAR DAILY
Hurricanes benefit mangroves in Florida's Everglades, study finds

Satellite image data reveals rapid decline of China's intertidal wetlands

Hungary's Orban vows to plant 10 trees for every newborn

Hot climates to see more variability in tree leafing as temperatures rise

SOLAR DAILY
Jet stream not getting 'wavier' despite Arctic warming

NASA prepares for new science flights above coastal Louisiana

Ball Aerospace-built Geostationary Air Quality Instrument Launches Successfully

Verifying forecasts for major stratospheric sudden warmings

SOLAR DAILY
Deep-sea osmolyte makes biomolecular machines heat-tolerant

Nanobubbles in nanodroplets

New production method for carbon nanotubes gets green light

A quantum breakthrough brings a technique from astronomy to the nano-scale









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.