GPS News  
STELLAR CHEMISTRY
Researchers discover anti-laser masquerading as perfect absorber
by Staff Writers
Durham NC (SPX) Feb 18, 2019

The width, height and spacing of the cylinders depicted here dictates how the metamaterial described in the new paper absorbs electromagnetic energy.

Researchers at Duke University have discovered that a perfect absorber of electromagnetic waves they described in a 2017 paper can easily be tweaked into a sort of "time-reversed laser" known as a coherent perfect absorber (CPA).

The research appeared online on January 28 in the journal Advanced Optical Materials.

A laser is a device that transforms energy into coherent light, meaning the light waves are perfectly aligned with one another. Reversing the process, a CPA - sometimes called a time-reversed laser - is a device that absorbs all of the energy from two identical electromagnetic waves hitting it from either side in perfect synchrony. That is, the crests and troughs of their waves enter the material from either side at precisely the same time.

In 2017, Willie Padilla, professor of electrical and computer engineering at Duke, built the first material capable of absorbing nearly 100 percent of an electromagnetic wave's energy without containing even an atom of metal. The device was a metamaterial - synthetic materials composed of many individual, engineered features that together produce properties not found in nature.

This particular metamaterial featured zirconia ceramic constructed into a surface dimpled with cylinders like the face of a Lego brick. After computationally modeling the device's properties by altering the cylinders' size and spacing, the researchers realized that they had actually created a more fundamental kind of CPA.

"We've studied this system before as a perfect absorber, but now we've figured out that this device can be configured to be a CPA as well," said Padilla. "This study has shown that these seemingly different fields are actually one and the same."

The CPAs currently described in the literature all have only one mode. They work when the incoming electromagnetic waves are either perfectly aligned or perfectly out of sync. Padilla and Kebin Fan, a research assistant professor in Padilla's laboratory, have discovered that their perfect absorber is actually a CPA with two overlapping modes: it can absorb both aligned and misaligned waves.

By changing the material's parameters so that the two modes no longer overlap, Padilla and Fan were able to show it could easily become just like the CPAs currently in the literature, but with much more versatility.

"Typical CPAs have only one variable, the material's thickness," said Fan. "We have three: the cylinders' radius, height and periodicity. This gives us a lot more room to tailor these modes and put them in the frequency spectrum where we want them, giving us a lot of flexibility for tailoring the CPAs."

In the paper, the researchers show that their device can switch between absorbing all phases of electromagnetic waves and only those in sync with one another merely by increasing the height of the cylinders from 1.1 millimeters to 1.4. With this ease of transition, they believe it should be possible to engineer a material that can dynamically switch between the two.

"We haven't done that yet," said Padilla. "It is challenging, but it's on our agenda."

While there aren't currently any devices that make use of the abilities of CPAs, Padilla and Fan have a few in mind. In principle, researchers could engineer a device that measures not just the intensity of incoming light like a normal camera, but also its phase.

"If you're trying to figure out the properties of a material, the more measurements you have, the more you can understand about the material," said Padilla. "And while coherent detectors do exist - we have one in our own lab, actually - they're extremely expensive to build through other technologies."

Research Report: "A Zero-Rank, Maximum Nullity Perfect Electromagnetic Wave Absorber."


Related Links
Duke University
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Shaping light lets 2D microscopes capture 4D data
Houston TX (SPX) Feb 15, 2019
Rice University researchers have added a new dimension to their breakthrough technique that expands the capabilities of standard laboratory microscopes. Two years ago, the Rice lab of chemist Christy Landes introduced super temporal resolution microscopy, a technique that allowed researchers to image fluorescent molecules 20 times faster than traditional lab cameras normally allow. They've now developed a general method to let a microscope capture 3D spatial information along with the fourth dimen ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Australia cattle giant warns of 'extreme losses' from floods

'Hundreds of thousands' of cattle feared dead after Australia floods

Meat consumption is pushing 150 large animal species toward extinction

Gypsum as an agricultural product

STELLAR CHEMISTRY
Spintronics by 'straintronics'

Penn engineers develop room temperature, two-dimensional platform for quantum technology

Quantum strangeness gives rise to new electronics

Boosting solid state chemical reactions

STELLAR CHEMISTRY
Spain joins France, Germany on new combat fighter

Bell awarded $240M for 12 Viper helicopters for Bahrain

Airbnb eyes the sky with hire of aviation exec

Brazil's Embraer sells 12 military aircraft to Nigeria

STELLAR CHEMISTRY
Teaching self-driving cars to predict pedestrian movement

Risk Analysis releases special issue on social science of automated cars

Giving keener 'electric eyesight' to autonomous vehicles

UN eyes rule for automatic emergency braking systems in new cars

STELLAR CHEMISTRY
Chinese exports unexpectedly perk up in January

Trump tariffs bring in additional $9 bn in first quarter

Hong Kong's super rich took a $20 bn beating in 2018: Forbes

Japan's Toshiba cuts profit outlook again

STELLAR CHEMISTRY
US Senate votes to expand nationals parks, protected lands

The art and science of Japan's cherry blossom forecast

How does the Amazon rain forest cope with drought?

Innovative GEDI Instrument Now Gathering Forest Data

STELLAR CHEMISTRY
Russian satellite registers unknown physical phenomena in Earth's atmosphere

Open-access sat data allows tracking of seasonal population movements

Science key to taking the pulse of our planet

New scale to characterize strength and impacts of atmospheric river storms

STELLAR CHEMISTRY
Customized mix of materials for three-dimensional micro- and nanostructures

Nano drops a million times smaller than a teardrop explodes 19th century theory

Rice lab adds porous envelope to aluminum plasmonics

Research details sticky situations at the nanoscale









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.