Subscribe free to our newsletters via your
. GPS News .




STELLAR CHEMISTRY
Rare Galaxy Found Furiously Burning Fuel for Stars
by Staff Writers
Montreal, Canada (SPX) Apr 26, 2013


The tiny red spot in this image is one of the most efficient star-making galaxies ever observed, converting gas into stars at the maximum possible rate. The galaxy is shown here in an image from NASA's Wide-field Infrared Survey Explorer (WISE), which first spotted the rare galaxy in infrared light. Visible-light observations from NASA's Hubble Space Telescope (inset) reveal that the starlight in this galaxy is extraordinarily compact, with most of the light emitted by a region just a fraction of the size of the Milky Way galaxy. Within that tiny region, stars are forming at a rate hundreds of times that of our galaxy. Astronomers have combined these star-formation and size measurements from WISE and Hubble, with a measurement of the amount of gas -- fuel for star formation -- from the IRAM Plateau de Bure interferometer to confirm that SDSSJ1504+54 is forming stars at the maximum theoretical rate. This is a case of star formation at its most extreme. Credit: NASA/JPL-Caltech/STScI/IRAM.

Astronomers have found a galaxy turning gas into stars with almost 100 percent efficiency, a rare phase of galaxy evolution that is the most extreme yet observed. The findings come from the IRAM Plateau de Bure interferometer in the French Alps, NASA's Wide-field Infrared Survey Explorer and NASA's Hubble Space Telescope.

"Galaxies burn gas like a car engine burns fuel. Most galaxies have fairly inefficient engines, meaning they form stars from their stellar fuel tanks far below the maximum theoretical rate," said Jim Geach of McGill University, lead author of a new study appearing in the Astrophysical Journal Letters.

"This galaxy is like a highly tuned sports car, converting gas to stars at the most efficient rate thought to be possible," he said.

The galaxy, called SDSS J1506+54, jumped out at the researchers when they looked at it using data from WISE's all-sky infrared survey. Infrared light is pouring out of the galaxy, equivalent to more than a thousand billion times the energy of our Sun.

"Because WISE scanned the entire sky, it detected rare galaxies like this one that stand out from the rest," said Ned Wright of UCLA, the WISE principal investigator.

Hubble's visible-light observations revealed that the galaxy is extremely compact, with most of its light emanating from a region just a few hundred light-years across.

"This galaxy is forming stars at a rate hundreds of times faster than our Milky Way galaxy, but the sharp vision of Hubble revealed that the majority of the galaxy's starlight is being emitted by a region just a few percent of the diameter of the Milky Way. This is star formation at its most extreme," said Geach.

The team then used the IRAM Plateau de Bure Interferometer to measure the amount of gas in the galaxy. The ground-based telescope detected millimeter-wave light coming from carbon monoxide, an indicator of the presence of hydrogen gas, which is fuel for stars.

Combining the rate of star formation derived with WISE, and the gas mass measured by IRAM, the scientists get a measure of the star formation efficiency.

The results reveal that the star-forming efficiency of the galaxy is close to the theoretical maximum, called the Eddington limit. In regions of galaxies where new stars are forming, parts of gas clouds are collapsing due to gravity.

When the gas is dense enough to squeeze atoms together and ignite nuclear fusion, a star is born. At the same time, winds and radiation from stars that have just formed can prevent the formation of new stars by exerting pressure on the surrounding gas, curtailing the collapse.

The Eddington limit is the point at which the force of gravity pulling gas together is balanced by the outward pressure from the stars. Above the Eddington limit, the gas clouds would be blown apart, halting star formation.

"We see some gas outflowing from this galaxy at millions of miles per hour, and this gas may have been blown away by the powerful radiation from the newly formed stars," said Ryan Hickox, an astrophysicist at Dartmouth College, Hanover, N.H., and a co-author on the study.

Why is SDSS J1506+54 so unusual? Astronomers say they're catching the galaxy in a short-lived phase of evolution, possibly triggered by the merging of two galaxies into one. The star-formation is so ferocious that in a few tens of millions of years, the blink of an eye in a galaxy's life, the gas will be used up, and the galaxy will mature into a massive elliptical galaxy.

The scientists also used data from the Sloan Digital Sky Survey, the W. M. Keck Observatory on Mauna Kea, Hawaii and the MMT Observatory on Mount Hopkins, Arizona.

Read the article in Astrophysical Journal Letters

.


Related Links
WISE
Hubble
McGill University
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Grains of Sand from Ancient Supernova Found in Meteorites
St. Louis MO (SPX) Apr 25, 2013
It's a bit like learning the secrets of the family that lived in your house in the 1800s by examining dust particles they left behind in cracks in the floorboards. By looking at specks of dust carried to Earth in meteorites, scientists are able to study stars that winked out of existence long before our solar system formed. This technique for studying the stars - sometimes called as ... read more


STELLAR CHEMISTRY
Deep, Permeable Soils Buffer Impacts of Agricultural Fertilization on Streams and Rivers in Southern Amazon

Ecology, economy and management of an agro-industrial Amazon frontier

Double cropping helps Brazil develop

New studies explore mango's potential health-affirming properties

STELLAR CHEMISTRY
Scientists provide 'new spin' on emerging quantum technologies

Germanium made compatible

Researchers measure near-field behavior of semiconductor plasmonic microparticles

Revolutionary new device joins world of smart electronics

STELLAR CHEMISTRY
Australia unveils its F-35 JSF 'Iron Bird'

China welcomes French president with Airbus deal

Multifunction Advanced Data Link Flight Tested For F-35 Program

Brazil drops plan to build AgustaWestland helicopter

STELLAR CHEMISTRY
Honda's annual net profit soars to $3.7 bn

Chinese prefer gas-guzzling vehicles?

Auto makers show off vehicles in key China market

GM by any other name? Car firms face brand puzzle in China

STELLAR CHEMISTRY
France eyes becoming trading hub for China yuan

Bill to collect Internet purchase sales tax looks set for Senate OK

Hong Kong's pursuit of luxury defies Western gloom

Southeast Asian leaders talk China, trade

STELLAR CHEMISTRY
Study Led by NUS Scientists Reveals Escalating Cost of Forest Conservation

Wildfires can burn hot without ruining soil

Indonesia moves towards approving deforestation plan

Brazil urged to stop invading indigenous lands

STELLAR CHEMISTRY
NASA's HyspIRI: Seeing the Forest and the Trees and More

Satrec Initiative of South Korea Continues Collaboration with UAE for DubaiSat-3 Program

Google says Street View data now take in 50 countries

DMCii increases downlink capacity with Svalbard ground station facilities

STELLAR CHEMISTRY
Scientists see nanoparticles form larger structures in real time

Super-nanotubes: 'Remarkable' spray-on coating combines carbon nanotubes with ceramic

Nanocoating At ESA

New device could cut costs on household products, pharmaceuticals




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement