. GPS News .




.
TECH SPACE
Rare Coupling of Magnetic and Electric Properties in a Single Material
by Staff Writers
Upton NY (SPX) Jul 26, 2011

Brookhaven physicists Stuart Wilkins (left) and John Hill at NSLS beamline X1A2, where their research was performed with a new soft x-ray scattering facility.

Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have observed a new way that magnetic and electric properties - which have a long history of ignoring and counteracting each other - can coexist in a special class of metals. These materials, known as multiferroics, could serve as the basis for the next generation of faster and energy-efficient logic, memory, and sensing technology.

The researchers, who worked with colleagues at the Leibniz Institute for Solid State and Materials Research in Germany, published their findings online in Physical Review Letters on July 25, 2011.

Ferromagnets are materials that display a permanent magnetic moment, or magnetic direction, similar to how a compass needle always points north. They assist in a variety of daily tasks, from sticking a reminder to the fridge door to storing information on a computer's hard drive.

Ferroelectrics are materials that display a permanent electric polarization - a set direction of charge - and respond to the application of an electric field by switching this direction. They are commonly used in applications like sonar, medical imaging, and sensors.

"In principle, the coupling of an ordered magnetic material with an ordered electric material could lead to very useful devices," said Brookhaven physicist Stuart Wilkins, one of the paper's authors.

"For instance, one could imagine a device in which information is written by application of an electric field and read by detecting its magnetic state. This would make a faster and much more energy-efficient data storage device than is available today."

But multiferroics - magnetic materials with north and south poles that can be reversed with an electric field - are rare in nature. Ferroelectricity and magnetism tend to be mutually exclusive and interact weakly with each other when they coexist.

Most models used by physicists to describe this coupling are based on the idea of distorting the atomic arrangement, or crystal lattice, of a magnetic material, which can result in an electric polarization.

Now, scientists have found a new way that electric and magnetic properties can be coupled in a material. The group used extremely bright beams of x-rays at Brookhaven's National Synchrotron Light Source (NSLS) to examine the electronic structure of a particular metal oxide made of yttrium, manganese, and oxygen. They determined that the magnetic-electric coupling is caused by the outer cloud of electrons surrounding the atom.

"Previously, this mechanism had only been predicted theoretically and its existence was hotly debated," Wilkins said.

In this particular material, the manganese and oxygen electrons mix atomic orbitals in a process that creates atomic bonds and keeps the material together.

The researchers' measurements show that this process is dependent upon the magnetic structure of the material, which in this case, causes the material to become ferroelectric, i.e. have an electric polarization. In other words, any change in the material's magnetic structure will result in a change in direction of its ferroelectric state. By definition, that makes the material a multiferroic.

"What is especially exciting is that this result proves the existence of a new coupling mechanism and provides a tool to study it," Wilkins said.

The researchers used a new instrument at NSLS designed to answer key questions about many intriguing classes of materials such as multiferroics and high-temperature superconductors, which conduct electricity without resistance.

The instrument, developed by Wilkins and Brookhaven engineers D. Scott Coburn, William Leonhardt, and William Schoenig, will ultimately be moved to the National Synchrotron Light Source II (NSLS-II), a state-of-the-art machine currently under construction. NSLS-II will produce x-rays 10,000 times brighter than at NSLS, enabling studies of materials' properties at even higher resolution.

This work was supported by the U.S. Department of Energy Office of Science.




Related Links
-
Space Technology News - Applications and Research

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
Chilean copper-molybdenum mine moves ahead
Santiago, Chile (UPI) Jul 19, 2011
Chile's Sierra Gorda copper-molybdenum mining project is moving ahead with a $1 billion participation from Fluor Corp. The Sierra Gorda mine in the Atacama Desert in northern Chile is expected to come on stream in 2014 with Fluor's projection management, responding to a global surge in demand for the minerals. The exact financial arrangements surrounding Fluor's participation are ... read more


TECH SPACE
Another Brazil farmer killed in Amazon shooting

As agricultural riches waylay pollinators an endangered tree suffers

Boeing, Embraer back sugar jet-fuel study

Japan to burn radiation-tainted beef

TECH SPACE
Nanoplasmonic Breaks Emission Time Record in Semiconductors

Graphene's 'quantum leap' takes electronics a step closer

New photonic crystals have both electronic and optical properties

RIM cutting 2,000 jobs, COO retiring

TECH SPACE
Rolls-Royce flies into profit

Embraer plans military transport jet

Boeing Delivers 400th Airplane to GECAS

Israel approves new Eilat international airport

TECH SPACE
California dreaming: LA imagines life without cars

Nissan and China partner Dongfeng to invest $8 bln

Nissan sees quarterly profit slide 20.3% after quake

EU adopts automaker eco-innovation credit

TECH SPACE
Chinese retail giant surges 41% on debut

Agencies unite against transnational crime

Argentine-U.S. ties reach new low

Australia, Malaysia sign refugee swap deal

TECH SPACE
Northwest Forest Plan has unintended benefit - carbon sequestration

Wood products part of winning carbon-emissions equation

Spread Of Fungus-Farming Beetles Is Bad News For Trees

Forests soak up third of fossil fuel emissions: study

TECH SPACE
Researchers Provide Detailed Picture of Ice Loss Following Collapse of Antarctic Ice Shelves

Aura Detects Pollution in the Great Lakes Region

TerraSAR-X image of the month - Volcanic eruption in Chile

Central America launches its 'Google' of weather

TECH SPACE
Pioneers get close-up view of miracle material graphene

Hydrogen may be key to growth of high-quality graphene

The wonders of graphene on display

City dwellers produce as much CO2 as countryside people do


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement