GPS News  
TIME AND SPACE
RIT professor predicts a universe crowded with black holes
by Staff Writers
Rochester NY (SPX) Jun 29, 2016


File image.

A new study published in Nature presents one of the most complete models of matter in the universe and predicts hundreds of massive black hole mergers each year observable with the second generation of gravitational wave detectors.

The model anticipated the massive black holes observed by the Laser Interferometer Gravitational-wave Observatory. The two colliding masses created the first directly detected gravitational waves and confirmed Einstein's general theory of relativity.

"The universe isn't the same everywhere," said Richard O'Shaughnessy, assistant professor in RIT's School of Mathematical Sciences, and co-author of the study led by Krzysztof Belczynski from Warsaw University. "Some places produce many more binary black holes than others. Our study takes these differences into careful account."

Massive stars that collapse upon themselves and end their lives as black holes, like the pair LIGO detected, are extremely rare, O'Shaughnessy said. They are less evolved, "more primitive stars," that occur in special configurations in the universe.

These stars from the early universe are made of more pristine hydrogen, a gas which makes them "Titans among stars," at 40 to 100 solar masses. In contrast, younger generations of stars consumed the corpses of their predecessors containing heavy elements, which stunted their growth.

"Because LIGO is so much more sensitive to these heavy black holes, these regions of pristine gas that make heavy black holes are extremely important," O'Shaughnessy said. "These rare regions act like factories for building identifiable pairs of black holes."

O'Shaughnessy and his colleagues predict that massive black holes like these spin in a stable way, with orbits that remain in the same plane. The model shows that the alignment of these massive black holes are impervious to the tiny kick that follows the stars' core collapse. The same kick can change the alignment of smaller black holes and rock their orbital plane.

The calculations reported in Nature are the most detailed calculations of its kind ever performed, O'Shaughnessy said. He likens the model to a laboratory for assessing future prospects for gravitational wave astronomy. Other gravitational wave astronomers are now using the model in their own investigations as well.

"We've already seen that we can learn a lot about Einstein's theory and massive stars, just from this one event," said O'Shaughnessy, also a member of the LIGO Scientific Collaboration that helped make and interpret the first discovery of gravitational waves.

"LIGO is not going to see 1,000 black holes like these each year, but many of them will be even better and more exciting because we will have a better instrument - better glasses to view them with and better techniques."

O'Shaughnessy is a member of RIT's Center for Computational Relativity and Gravitation where he collaborates with Carlos Lousto, professor in RIT's School of Mathematical Sciences and a member of the LIGO Scientific Collaboration.

"We feel like parents of a beautiful daughter called gravitational wave astronomy born a few months ago and seeing her grow more gorgeous by the day," Lousto said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rochester Institute of Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
NRL astrophysicist probes theory of black-hole accretion
Washington DC (SPX) Jun 29, 2016
Utilizing the Atacama Large Millimeter/submillimeter Array (ALMA), one of the most powerful telescopes in the world, U.S. Naval Research Laboratory (NRL) astrophysicist Dr. Tracy Clarke and an international team of researchers have peered into the feeding habits of a supermassive black hole and witnessed the first evidence of a new diet. The black hole, whose mass is nearly 300 million tim ... read more


TIME AND SPACE
U of T Mississauga professor discovers new origins for farmed rice

Better soil data key for future food security

How squash agriculture spread bees in pre-Columbian North America

Crop breeding is not keeping pace with climate change

TIME AND SPACE
World's first 1,000-processor chip

Circuit technology that resolves issues with high-frequency piezoelectric resonators

Scientific gains may make electronic nose the next everyday device

Novel energy inside a microcircuit chip

TIME AND SPACE
Brazilian air force tests KC-390 transport

Taiwan cabin crew end strike after China Airlines concessions

CH-53K helicopter achieves external payload milestone

Tanzania debris to be checked for MH370 link

TIME AND SPACE
Ethics dilemmas may hold back autonomous cars: study

VW to pay $10 bn in US over emissions scandal: source

Electric vehicles just starting to make a splash

Volkswagen places question mark over future of diesel technology

TIME AND SPACE
Trudeau to host Obama, Pena Nieto for North Americas summit

China steel giants plan merger in face of global glut

Chinese ship inaugurates expanded Panama Canal

Russia, China chart new trade course

TIME AND SPACE
Where do rubber trees get their rubber

Significant humus loss in forests of the Bavarian Alps

Botanical diversity unraveled in a previously understudied forest in Angola

Boreal felt lichen set to decline 50 percent in 25 years

TIME AND SPACE
Russia, Italy to build earth remote sensing satellite network

A First: NASA Spots Single Methane Leak from Space

Satellite tracking unlock mystery of Hawksbill migration in South Pacific

exactEarth and DigitalGlobe Partner to Combat IUU Fishing

TIME AND SPACE
DNA shaping up to be ideal framework for rationally designed nanostructures

New 'ukidama' nanoparticle structure revealed

Shaping atomically thin materials in suspended structures

Nanoparticles and bioremediation can decontaminate polluted soils









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.