Subscribe free to our newsletters via your
. GPS News .




CHIP TECH
Quantum networks: Back and forth are not equal distances
by Staff Writers
Copenhagen, Denmark (SPX) Jul 29, 2015


The figure shows the calculations of the photon emission in the new directional photon source. If the spin of the electron points up, the photon is emitted in one direction (blue). If the spin of the electron points down, the photon is emitted in the opposite direction (red). Image courtesy Sahand Mahmoodian and Soren Stobbe, NBI. For a larger version of this image please go here.

Quantum technology based on light (photons) has great potential for radically new information technology based on photonic circuits. Up to now, the photons in quantum photonic circuits have behaved in the same way whether they moved forward or backward in a photonic channel. This has limited the ability to control the photons and thus build complex circuits for photonic quantum computers.

Now researchers from the Niels Bohr Institute have discovered a new type of photonic channels, where back and forth are not equal distances! Such a system has been a missing component for building quantum photonic circuits on a large scale. The results are published in the scientific journal, Nature Nanotechnology.

"The smallest component of light is a photon and photons are very well suited for carrying information. A quantum circuit based on photons could contain far more information than is possible with current computer technology and the information could not be intercepted en route. So we are working to shape the future quantum technology based on photonics," explains Peter Lodahl, Professor and head of the research group Quantum Photonics at the Niels Bohr Institute at the University of Copenhagen.

Photonic chips with new properties
Researchers at the Niels Bohr Institute have developed a photonic chip, in which a light source - a so-called quantum dot - is embedded. By shining light on the quantum dot using a laser, its electrons are excited, which then jump from one orbit to another and thus emit a single photon at a time.

Light is normally emitted in all directions, but the photonic chip is constructed so that all of the photons are sent out through a photonic channel. So far so good. But the problem is that the photons are sent in both directions in the photonic channel and this limits the efficiency of the light source. This is a problem that grows, the bigger and more complex the circuit becomes.

"In our work to resolve the problem, we have now developed a new photonic channel where we can control the photons so that they are only sent in one direction. It is a fundamental new discovery, that you can get the emission of light in a photonic chip to take place in a manner not previously thought possible," explains Peter Lodahl.

Controls the direction of the photon emission
Immo Sollner and Sahand Mahmoodian, both postdocs in the research group Quantum Photonics, have worked with both the theory and the experiments. They explain that they use laser light to excite the quantum dot's electrons, which jump from one orbit to another and thereby emit a single photon.

By controlling the spin of the electrons with a magnetic field, you can get an entirely different light emission. A photon emitted from a quantum dot with an electron "spin down" chooses one direction, while the photon from a quantum dot with an electron "spin up", chooses the opposite direction.

Delay in one direction
The most exciting thing about the new photon channels is perhaps not even that the direction of the light emission depends on the spin of the quantum dots. It also turns out that a photon that enters from one end of the channel behaves differently than a photon that enters from the other end.

Only when the photon moves in one direction does it interact with the quantum dot and this slows the photon a little bit, just as if the photon had travelled a little farther. In this system, back and forth are therefore not equal distances! And unequal distances are not unimportant, but on the contrary, extremely important.

"The photon is delayed a bit because it interacts with the quantum dot. We now have a number of new opportunities to control and design the interaction between a photon and a quantum dot, which is important for the development of quantum computers," explain Immo Sollner and Sahand Mahmoodian.

Paves the way for new quantum technology

Soren Stobbe, who is an associate professor in the Quantum Photonics group at the Niels Bohr Institute, has led the production of the new light sources that has been developed in collaboration with Professor Jin Dong Song's research group at the Korea Institute of Technology, and he adds that the new technology has the great advantage that it is based on the same semiconductor materials known from the computer industry.

This means that the path from the laboratory to application is the shortest possible, although the researchers themselves estimate that it will require significant investment.

"We can control the state of the quantum dot and thereby determine the direction in which the photon is emitted and whether the light, which moves in one direction or the other, needs to be delayed. This is a completely new functionality that will have some practical advantages when we start constructing quantum networks, which are expected to have great potential for calculating difficult problems in chemistry and materials technology. Therefore, we have patented our discovery and are working towards commercialisation," says Professor Peter Lodahl.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Copenhagen - Niels Bohr Institute
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
New chiral property of silicon, with photonic applications found
Philadelphia, PA (SPX) Jul 28, 2015
By encoding information in photons via their spin, "photonic" computers could be orders of magnitude faster and efficient than their current-day counterparts. Likewise, encoding information in the spin of electrons, rather than just their quantity, could make "spintronic" computers with similar advantages. University of Pennsylvania engineers and physicists have now discovered a property o ... read more


CHIP TECH
Food tech startups raking in cash: survey

LED sole-source lighting effective in bedding plant seedling production

Rice grains hold big promise for greenhouse gas reductions, bioenergy

How a kernel got naked and corn became king

CHIP TECH
Quantum networks: Back and forth are not equal distances

New chiral property of silicon, with photonic applications found

New type of modulator for the future of data transmission

This could replace your silicon computer chips

CHIP TECH
US delivers F-16s to Egypt ahead of Kerry visit: embassy

Engine fed steady diet of volcanic ash

Could 'Windbots' Someday Explore the Skies of Jupiter?

Harris enhancing targeting capabilities Navy aircraft

CHIP TECH
Uber valuation tops $50 bn with latest funding: report

Toyota falls behind VW in world's biggest automaker race

Nissan's three-month profit up 36% on sales in US, China

GM to invest $5 bn on new Chevrolet for emerging markets

CHIP TECH
WTO strikes 'landmark' deal to cut tariffs on IT products

British PM heads to Southeast Asia with trade, IS on agenda

Maldives to allow foreigners to own land

Wal-Mart buys remaining shares of Chinese firm Yihaodian

CHIP TECH
Drivers of temporal changes in temperate forest plant diversity

Myanmar amnesty frees Chinese loggers, political prisoners

Mangroves help protect against sea level rise

China ire as Myanmar jails scores for illegal logging

CHIP TECH
NASA satellite images Alaska's scorched earth

California 'Rain Debt' Equal to Average Full Year of Precipitation

Space-eye-view could help stop global wildlife decline

Satellites peer into rock 50 miles beneath Tibetan Plateau

CHIP TECH
Nanotechnology research leads to super-elastic conducting fibers

Breakthrough in knowledge of how nanoparticles grow

On the way to breaking the terahertz barrier for graphene nanoelectronics

A most singular nano-imaging technique




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.