GPS News  
CHIP TECH
Quantum 'hack' to unleash computing power
by Staff Writers
Sydney, Australia (SPX) Feb 15, 2018

illustration only

Physicists at the University of Sydney have found a 'quantum hack' that should allow for enormous efficiency gains in quantum computing technologies.

As scientists at IBM, Google, Microsoft and universities across the world seek to scale-up quantum technology to make a practical quantum computer, finding ways to do computations within an acceptable error threshold is a big technological problem.

The building blocks of quantum machines - quantum bits, or qubits - are prone to interference from their surrounding environments, leading them to decohere and lose their quantum properties. Allowing for this through error correction is vital to the successful scale-up of quantum technologies.

The theoretical breakthrough from the team of David Tuckett, Professor Stephen Bartlett and Associate Professor Steven Flammia allows for a 400 percent gain in the amount of interference noise a quantum computing system can theoretically sustain while retaining its fidelity.

"This is achieved by tailoring our quantum decoder to match the properties of the noise experienced by the qubits," said Associate Professor Flammia.

"In that sense, we are 'hacking' the generally accepted coding for error correction," Professor Bartlett said.

The research is published this week in the top-tier journal Physical Review Letters. It forms part of Mr Tuckett's work as a PhD candidate at the University.

At present the rule-of-thumb threshold for fidelity in a qubit architecture is about 1 percent. This means at least 99 percent of a system's qubits need to retain information and coherence for relevant periods of time in order to do any useful computations.

This real-world threshold of 1 percent comes from a theoretical approach where ideal hardware should allow for 10.9 percent error threshold. The drop in tolerance comes from 'noise' in using real-world machines.

Assuming ideal hardware, the work of the Sydney quantum team, which is based at the University of Sydney Nano Institute, has an error correction threshold of up to 43.7% - a fourfold improvement on the current theoretical basis for error correction.

This means fewer physical qubits could be required for a single quantum logic gate - or basic quantum circuit - that can perform a useful calculation.

This new approach should be applicable in any quantum system - whether the qubits rely on superconductors, trapped ions, semiconductors, or topological structures (should they need them).

Experimental scientists now need to apply this 'quantum hack' to real-world systems to see how it flows through using 'noisy' hardware.

Research paper


Related Links
University of Sydney
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Understanding heat behavior in electronic devices boosts performance
Barcelona, Spain (SPX) Feb 05, 2018
In a paper published last week in the journal Nature Communications, researchers from the Department of Physics and the Department of Electronics Engineering at the UAB, and from the Birck Nanotechnology Center at Purdue University (USA), studied the heating of small current lines placed on top of a silicon substrate, simulating the behavior of current transistors. This work shows how these metal lines heat up in a way that cannot be explained with the laws ruling heat behavior in our everyday exp ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Growing crops with crushed rocks could reduce CO2 emissions

Myanmar farmers going against the grain with apps

Giant London glasshouse to reopen with world's rarest plants

Cover crops in nitrogen's circle of life

CHIP TECH
Major discovery in controlling quantum states of single atoms

Silicon qubits plus light add up to new quantum computing capability

First 3-D imaging of excited quantum dots

Mass production of new class of semiconductors closer to reality

CHIP TECH
Extreme conditions await MH370 recovery if wreckage found

US fighter jet drops fuel tanks in Japan accident

Air Force makes way for the B-21 Raider to replace B-1B, B-2 bombers

Chinese woman follows handbag into X-ray scanner

CHIP TECH
Optimizing recycling of scrap car parts yields big savings

German court could open way to bans on diesel cars

VW, Daimler face more recalls over emissions cheating: report

Maximizing the environmental benefits of autonomous vehicles

CHIP TECH
HSBC profits surge as CEO departs

WTO chief urges US to avoid paralysing trade system

US eyes heavy tariffs on China, Russia to counter steel, aluminum glut

After stunning growth streak, Amazon ambitions seem boundless

CHIP TECH
Polish logging in ancient forest breaches EU law: court advisor

Hunting wolves in Serbia's southern forests

A theory of physics explains the fragmentation of tropical forests

FSU researchers: Savanna fires pump Central African forests full of nitrogen

CHIP TECH
Farewell to a Pioneering Pollution Sensor

ESA Cluster mission unveils the magnetosphere

Landsat 8 marks five years in orbit

Micro to macro mapping - Observing past landscapes via remote-sensing

CHIP TECH
Scalable and cost-effective manufacturing of thin film devices

USTC realizes strong indirect coupling in distant nanomechanical resonators

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support

Fast-spinning spheres show nanoscale systems' secrets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.