Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
Quantum effects help cells capture light, but the details are obscure
by Staff Writers
Reston VA (SPX) Dec 09, 2013


File image.

Sophisticated recent experiments with ultrashort laser pulses support the idea that intuition-defying quantum interactions between molecules help plants, algae, and some bacteria efficiently gather light to fuel their growth.

But key details of nature's vital light-harvesting mechanisms remain obscure, and the exact role that quantum physics may play in understanding them is more subtle than was once thought, according to an Overview Article in the January issue of BioScience.

The article, by Jessica M. Anna and Gregory D. Scholes of the University of Toronto and Rienk van Grondelle of Vrije Universiteit in Amsterdam, describes experiments that employ a technique called 2-D electronic spectroscopy.

Researchers flash laser pulses at the light-harvesting protein molecules of bacteria and algae, timed to within a billionth of a billionth of a second, then observe how the energized molecules re-emit light of different colors in the ensuing instants.

This allows investigators to deduce how energy is stored by and moves among the molecules. But the results would be impossible to explain if captured light energy were conveyed by discrete entities moving randomly between molecules. Rather, the insights of quantum mechanics are needed.

Quantum mechanics envisages particles as being smeared over regions of space, rather than being pointlike, and as interfering with each other like waves.

The smearing is undetectable in everyday life, but the experimental results indicate that, within arrays of light-harvesting molecules that serve as light "antennas" inside cells, such "coherence" eases ultrafast energy transfers that help organisms use solar energy. It thus allows life to pervade the planet, using the process known as photosynthesis to extract carbon dioxide from the air.

Yet Anna and her colleagues point out that the molecular details of the light-gathering apparatus have evolved very differently in different species, so there is nothing simple about how organisms exploit quantum coherence.

Indeed, coherence, contrary to what some researchers have speculated, does not seem to dominate light gathering by providing an express route for conveying energy from where it is first captured to the chemical reaction center where it is used.

Instead, Anna and her colleagues write, researchers should "inquire how coherence on short length and time scales might seed some kind of property or function" in light-gathering systems.

Such understanding might help scientists devise environmentally friendly solar technologies that could regulate their rate of energy input and redistribute and repair their components when the need arises, as living cells do.

The article by Anna, Scholes, and van Grondelle and other peer-reviewed articles in the January 2014 issue of BioScience are now published as Advance Access.

.


Related Links
American Institute of Biological Sciences
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
A Whirling Dervish puts physicists in a spin
London, UK (SPX) Dec 08, 2013
A force that intricately links the rotation of the Earth with the direction of weather patterns in the atmosphere has been shown to play a crucial role in the creation of the hypnotic patterns created by the skirts of the Whirling Dervishes. This is according to an international group of researchers who have demonstrated how the Coriolis force is essential for creating the archetypal, and ... read more


TIME AND SPACE
Saudi, China scientists decode date-palm tree DNA

Qantas steward with Parkinson's to sue over pesticide link

IPM for Billbugs in Orchardgrass

Unlikely collaboration leads to discovery of 'gender-bending' plant

TIME AND SPACE
A step closer to composite-based electronics

50 Meters of Optical Fiber Shrunk to the Size of Microchips

Chips meet Tubes: World's First Terahertz Vacuum Amplifier

NIST demonstrates how losing information can benefit quantum computing

TIME AND SPACE
Northrop Grumman Team Demonstrates Virtual Air Refueling Across Distributed Simulator Locations for USAF

Purdue science balloon, thought lost, makes dramatic return to campus

German helicopter deal examined by federal auditors: report

US telling airlines to stay safe in East China Sea

TIME AND SPACE
Britain pledges commitment to driverless car technology

China approves $1.3 bn Renault-Dongfeng joint venture

Sweden joins race for self-driving cars

Motorized bicycle wheel said to give 20 mph speed, range of 30 miles

TIME AND SPACE
China exports grow strongly on demand from US, Europe

Beijing second costliest Asian city for expats: survey

Chinese tycoon unveils $10bn Ukrainian port project: report

Electronic pickpocketing risk from radio-frequency gadgets

TIME AND SPACE
Humans threaten wetlands' ability to keep pace with sea-level rise

Development near Oregon, Washington public forests

Researchers identify genetic fingerprints of endangered conifers

Lowering stand density reduces mortality of ponderosa pine stands

TIME AND SPACE
China-Brazil satellite fails to enter orbit

Mysteries of Earth's radiation belts uncovered by NASA twin spacecraft

Mapping the world's largest coral reef

Indra To Manage And Operate The Main Sentinel-2

TIME AND SPACE
Laser light at useful wavelengths from semiconductor nanowires

Stanford engineers show how to optimize carbon nanotube arrays for use in hot spots

Ultra-sensitive force sensing with a levitating nanoparticle

Graphene nanoribbons for 'reading' DNA




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement