Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
Quantum Temperature
by Staff Writers
Vienna, Austria (SPX) Sep 14, 2013


Principle of the experiment: In the beginning the atom cloud is prepared in an almost perfectly ordered quantum state (symbolized by gray atoms). Over time, this quantum order is lost and disorder spreads through the system with a certain well-defined velocity (symbolized by the mixture of red and gray atoms). This disorder can be associated with the emergence of a temperature. The initial quantum properties are lost only through interactions between the atoms, without any influence from the outside world.

How does a classical temperature form in the quantum world? An experiment at the Vienna University of Technology has directly observed the emergence and the spreading of a temperature in a quantum system. Remarkably, the quantum properties are lost, even though the quantum system is completely isolated and not connected to the outside world. The experimental results are being published in this week's issue of "Nature Physics".

The connection between the microscopic world of quantum physics and our everyday experience, which is concerned with much larger objects, still remains puzzling. When a quantum system is measured, it is inevitably disturbed and some of its quantum properties are lost.

A cloud of atoms, for example, can be prepared in such away that each atom is simultaneously located at two different places, forming a perfect quantum superposition. As soon as the location of the atoms is measured, however, this superposition is destroyed. All that is left are atoms sitting at some well-defined places. They behave just as classical objects would.

In this case, the transition from quantum behavior to classical behavior is initiated by the measurement - a contact with the outside world. But what happens, if a quantum system is not influenced from the outside at all? Can classical properties still emerge?

Disorder in the Quantum World
"We are studying clouds consisting of several thousand atoms", explains Tim Langen, lead author of the study from Professor Jorg Schmiedmayer's research team at Vienna University of Technology. "Such a cloud is small enough to effectively isolate it from the rest of the world, but it is large enough to study how quantum properties are lost".

In the experiment, the atom clouds are split into two halves. After a certain time the two halves are compared to each other. In that way, the scientists can measure the amount of quantum mechanical connection between the clouds. Initially, this connection is perfect; all atoms are in a highly ordered quantum state. But as the cloud is a large object consisting of thousands of particles, this order does not remain for long.

Loss of Quantum Properties Without Influence From Outside
As the atoms interact with each other, disorder begins to spread with a certain velocity. Atoms in the already disordered regions lose their quantum properties. A temperature can be assigned to them - just as in a classical gas.

"The velocity with which the disorder spreads depends on the number of atoms", says Tim Langen. This defines a clear border between the regions which can be described by a classical temperature and regions where quantum properties remain unchanged.

After a certain time the disorder has spread over the whole cloud. The remarkable observation is that this loss of quantum properties happens just because of quantum effects inside the atom cloud, without any influence from the outside world. "So far, such a behavior had only been conjectured, but our experiments demonstrate that nature really behaves like this", Jorg Schmiedmayer points out.

Atomic Clouds: A World on its Own
In a way, the atomic cloud behaves like its own miniature universe. It is isolated from the environment, so its behavior is solely determined by its internal properties. Starting with a completely quantum mechanical state, the cloud looks "classical" after some time, even though it evolves according to the laws of quantum physics.

That is why the experiment could not just help us to understand the behavior of large atom clouds, it could also help to explain, why the world that we experience every day looks so classical, even though it is governed by quantum laws.

Original Publication

.


Related Links
Vienna University of Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
New groundbreaking research may expose new aspects of the universe
Odense M, Denmark (SPX) Sep 09, 2013
No one knows for sure, but it is not at all unlikely that the universe is constructed in a very different way than the usual theories and models of today predict. The most widely used model today cannot explain everything in the universe, and therefore there is a need to explore the parts of nature which the model cannot explain. This research field is called new physics, and it turns our ... read more


TIME AND SPACE
Almost 20 percent of grain in China lost or wasted from field to fork

Indonesian farmers take legal action against president over haze

Overgrazing turning parts of Mongolian Steppe into desert

Certification of aquaculture critical to sustainable seafood production

TIME AND SPACE
New magnetic semiconductor material holds promise for 'spintronics'

Growing thin films of germanium

Shining a little light changes metal into semiconductor

Engineers improve electronic devices using molybdenum disulfide

TIME AND SPACE
Raytheon moves forward on DARPA Persistent Close Air Support program

USAF and Boeing Finalize KC-46A Tanker Aircraft Design

Boeing Forecasts China's Fleet to Triple Over Next 20 Years

BAE considers military refueling conversion for commercial jet

TIME AND SPACE
France's Renault teams up with electric car pioneer

McLaren roars into China luxury auto market

Tough traffic ban frustrates Baghdadis

Hong Kong launches electric bus in drive against pollution

TIME AND SPACE
Romania workers occupy site of contested gold mine project

Richemont sales growth hit by unfavourable exchange rates

Egypt violence stirs fears of Suez Canal terror

Multinationals to get equal treatment in China: premier

TIME AND SPACE
Uruguay going slow on pulp mill opposed by Argentinaw.lll

400-year study finds Northeast forests resilient, changing

New technique for measuring tree growth cuts down on research time

Northeastern US forests transformed by human activity over 400 years

TIME AND SPACE
Using digital SLRs to measure the height of Northern Lights

After a Fire, Before a Flood: NASA's Landsat Directs Restoration to At-Risk Areas

JIB Antennas Will Support Ship ID Capability Being Added to Canadas RADARSAT Constellation Mission

Reflecting on Earth's albedo

TIME AND SPACE
Researchers figure out how to 'grow' carbon nanotubes with specific atomic structures

Researchers produce nanostructures with potential to advance energy devices

Size Matters as Nanocrystals Go Through Phases

New breakthrough for structural characterization of metal nanoparticles




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement