GPS News  
Putting A Green Cap On Garbage Dumps

The team's studies of the benefits of a landfill phytocap show that the approach can reduce surface methane emission four to five times more than the adjacent un-vegetated site. They found that a cap of 1400 mm thickness also reduces surface methane emissions 45% more than a cap half as thick.
by Staff Writers
Rockhampton, Australia (SPX) Nov 27, 2008
Landfill sites produce the greenhouse gases, methane and carbon dioxide, as putrescible waste decays. Growing plants and trees on top of a landfill, a process known as 'Phytocapping', could reduce the production and release of these gases, according to Australian scientists writing in a forthcoming issue of International Journal of Environmental Technology and Management.

Despite legislative pressures to reduce landfill use, in certain parts of the world it remains the most economical and simplest method of waste disposal.

Biodegradation of organic matter in a landfill site occurs most rapidly when water comes into contact with the buried waste, explains Kartik Venkatraman and Nanjappa Ashwath of the Department of Molecular and Life Sciences, at Central Queensland University (CQU), Rockhampton, Australia.

They point out that conventional approaches to reducing this effect involve placing compacted clay over the top of a landfill to form a cap that minimizes percolation of water into the landfill.

Some sites do not attempt to prevent water percolation and biodegradation and instead install gas collection systems to trap the methane released.

The use of clay capping has generally proved ineffective in trials in the USA, the researchers say. The problem being that in arid regions the clay cap dries out and cracks allowing water to easily percolate into the landfill.

Equally problematic, methane gas collection is an inordinately expensive option for many Australian landfills that do not reach the methane production threshold to enable efficiency.

Hence, a new technique, known as phytocapping, which involves placing a layer of top soil and growing dense vegetation on top of a landfill, was successfully trailed at Rockhampton's Lakes Creek Landfill not far from Central Queensland University.

This research was conducted by Kartik Venkatraman and Nanjappa Ashwath (CQU) in conjunction with the Rockhampton Regional Council and Phytolink Pty LTD.

Selected plant species are established on an unconsolidated soil placed over the waste. The soil acts both as "storage" and "sponge" and the plants as "bio-pumps" and "rainfall interceptors". For an effective site water balance, it is important that appropriate plant species are chosen and the soil depth optimized. As such, the team has investigated the effects of different ranges of species as well as soil depth.

The team's studies of the benefits of a landfill phytocap show that the approach can reduce surface methane emission four to five times more than the adjacent un-vegetated site. They found that a cap of 1400 mm thickness also reduces surface methane emissions 45% more than a cap half as thick.

The team also looked at the effects of nineteen tree species, including acacias, figs, eucalyptus, and other Australian native species, growing in the phytocap to determine which species are most effective at reducing water percolation and methane emissions. The root system acts as a good substrate to methanogens, which oxidizes methane thereby reducing methane emission into the atmosphere.

The benefits of phytocapping include, cutting in half the cost of landfill remediation and providing biodiversity corridors along which wild species can travel. The process also inverts the aesthetic qualities of landfills adjacent to urban communities, and in some cases, introduces economical benefits such as timber and fodder. "The establishment of phytocaps would offer an additional and economical way of reducing methane emission from landfills," the researchers conclude.

Related Links
Central Queensland University (CQU)
Climate Science News - Modeling, Mitigation Adaptation



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Analysis: Rocking the CO2 problem
Washington DC (UPI) Nov 26, 2008
Geological formations could hold more than 1,000 years of carbon dioxide emissions from U.S. power plants, keeping the gas out of the atmosphere, a government report estimates.







  • Two China airlines to get govt aid: state media
  • China's air show saw four bln dollars in deals: report
  • China plane-makers take first steps to rival global giants
  • Aviation giants look to China amid global turbulence

  • Life Is A Highway: Study Confirms Cars Have Personality
  • BMW and Swedish Vatenfall plan electric car network for Berlin
  • EU fails to reach agreement on car emissions regime
  • Analysis: German cars to turn green?

  • Boeing Develops Common Software To Reduce Risk For TSAT
  • USAF Tests Battlespace Information Solution On AC-130 Gunship
  • Harris Awarded Contract For USAF Satellite Control Network Program
  • LockMart Delivers Key Hardware For US Navy's Mobile User Objective System

  • Czech Political Machinations Could Sink ABM Deal Yet
  • Boeing-backed study lists GMD work benefits for Alaska
  • Russian president sees Obama flexible on missile defense
  • Russian Iskander Missiles Ready To Roll

  • Acid Soils In Slovakia Tell Somber Tale
  • Nutrients In Water May Be A Bonus For Agriculture
  • Tuna fishing to be cut by 30 pct over two years: EU
  • British food waste collections debated

  • Rats trained to sniff land mines, TB
  • Health issues affect FEMA trailer kids
  • Australia, Indonesia create disaster reduction center
  • China has only identified 19,000 victims of earthquake: official

  • Astronomers hope to see orbiting tool bag
  • Please don't litter space, scientists say
  • Eliminating Space Debris Part Two
  • Hollywood moguls see cinema's future in 3D

  • Rescue Robot Exercise Brings Together Robots, Developers, First Responders
  • Honda unveils leg assist machine for elderly
  • Germany's CESAR Crowned King Of Rovers In ESA's Robotics Challenge
  • Cliffbot Goes Climbing

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement