GPS News  
TIME AND SPACE
Processes in the atomic microcosmos are revealed
by Staff Writers
Nuremberg, Germany (SPX) May 18, 2018

Prof. Dr. Peter Hommelhoff, Chair of Laser Physics at FAU. (Image: FAU/Georg Pohlein)

Physicists at Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU) have successfully generated controlled electron pulses in the attosecond range. They used optical travelling waves that are formed by laser pulses of varying wavelengths.

The movements of electrons in atoms were revealed using attosecond free-electron pulses. The findings of the researchers from Erlangen have been published in the acclaimed journal Physical Review Letters.

Scientists have been researching ways of generating packets of electrons in extremely short timescales for several years. Such pulses enable ultrafast movements to be tracked, for example vibrations in atomic lattices, phase transitions in materials or molecular bonds in chemical reactions.

"The shorter the pulse, the faster the movements that can be mapped," explains Prof. Dr. Peter Hommelhoff, Chair of Laser Physics at FAU.

"However, this also involves the special challenge of how to control the packets of electrons." Last year, Hommelhoff and his team successfully generated periodic electron pulses with a duration of 1.3 femtoseconds - a femtosecond is one quadrillionth of a second. To do so, they directed a continuous beam of electrons over a silicon lattice and superimposed it with the optical field of laser pulses.

From femtosecond to attosecond pulses
The researchers at FAU have now gone one better and have generated electron pulses of 0.3 femtoseconds or 300 attoseconds. Lasers were also used for this method. Firstly, packets of electrons are emitted from an electron source using ultraviolet laser pulses.

These packets then interact with optical travelling waves that are formed in a vacuum by two infrared laser pulses of varying wavelengths.

"The ponderomotive interaction causes a shift in the electron density," explains Norbert Schonenberger, a researcher at Prof. Hommelhoff's Chair and co-author of the study. "We break down the electron packet to a certain extent into even smaller packets to generate electron pulses in the attosecond range.

The time delay in the arrival of the laser beams enables us to generate specific travelling waves and thus precisely control the trains of pulses."

This method developed by the physicists at FAU could revolutionise experiments in electron diffraction and microscopy. In future, attosecond pulses will not only be able to be used to trace the movements of atoms , but also even to show the dynamics of electrons within atoms, molecules and solid bodies.

The results have been published under the title "Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains" in the renowned journal Physical Review Letters.

Research paper


Related Links
University of Erlangen-Nuremberg
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
The big bell test challenges Einstein
Washington DC (SPX) May 10, 2018
On November 30th, 2016, more than 100,000 people around the world contributed to a suite of first-of-a-kind quantum physics experiments known as The BIG Bell Test. Using smartphones and other internet-connected devices, participants contributed unpredictable bits, which determined how entangled atoms, photons, and superconducting devices were measured in twelve laboratories around the world. Scientists used the human input to close a stubborn loophole in tests of Einste ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
China stops anti-dumping probe into US sorghum

Pesticide resistance needs urgnet attention, large-scale study finds

A green approach to making ammonia could help feed the world

EU court upholds curbs on bee-killing pesticide

TIME AND SPACE
High-sensitivity microsensors on the horizon

Dutch firm ASML perfecting 'microchip shrink' for tech giants

Deeper understanding of quantum chaos may be the key to quantum computers

Smart microchip can self-start and operate when battery runs out

TIME AND SPACE
Taking Air Travel to the Streets, or Just Above Them

Airborne Tactical contracts for subsonic, supersonic simulation aircraft

Boeing, Airbus, GE among biggest losers from US Iran shift

US Air Force orders stand-down for safety review

TIME AND SPACE
How even one automated, connected vehicle can improve safety and save energy in traffic

Tesla chief defends self-driving cars after new crash

BMW to be first foreign firm to test self-driving car in China

US investigating battery fire in fatal Tesla crash

TIME AND SPACE
Trump dampens chances of trade deal with China

Mnuchin to lead US in trade talks with China

China spots problems with US cars, pork as trade talks loom

China's industrial output jumps but sales slump

TIME AND SPACE
Forest loss in one part of US can harm trees on the opposite coast

India's toy carvers threatened by deforestation

Amazonian rainforests gave birth to the world's most diverse tropical region

Global forests expanding: Reflects wellbeing, not rising CO2, experts say

TIME AND SPACE
NOAA finds rising emissions of ozone-destroying chemical banned by Montreal Protocol

Isotopic evidence for more fossil fuel sources of aerosol ammonium in city air

Fleet of spacecraft spot long-sought-after process in the Earth's magnetic field

China launches new Earth observation satellite for environmental monitoring

TIME AND SPACE
A new Bose-Einstein condensate created at Aalto University

Course set to overcome mismatch between lab-designed nanomaterials and nature's complexity

This 2-D nanosheet expands like a Grow Monster

Robot developed for automated assembly of designer nanomaterials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.